Theoretical Cosmology

Ruth Durrer, Roy Maartens, Costas Skordis

Geneva, Capetown, Nottingham

FACULTÉ DES SCIENCES Département de physique théorique

Benasque, February 16 2011

What is the observational basis of homogeneity and isotropy in cosmology? Isotropy – CMB Homogeneity – RM

What are very large scale galaxy catalogs really measuring?
 What are very large scale N-body simulations simulating? – RD

 How can we test general relativity in cosmology? Is dark energy a manifestation of deviations from GR? – CS

- What is the observational basis of homogeneity and isotropy in cosmology? Isotropy – CMB Homogeneity – RM
- What are very large scale galaxy catalogs really measuring?
 What are very large scale N-body simulations simulating? RD
- How can we test general relativity in cosmology? Is dark energy a manifestation of deviations from GR? – CS

- What is the observational basis of homogeneity and isotropy in cosmology? Isotropy – CMB Homogeneity – RM
- What are very large scale galaxy catalogs really measuring?
 What are very large scale N-body simulations simulating? RD
- How can we test general relativity in cosmology? Is dark energy a manifestation of deviations from GR? – CS

$(z, \theta, \phi) = (z, \mathbf{n})$ + info about mass, spectral type...

We can count the galaxies inside a redshift bin and small solid angle, $N(z, \mathbf{n})$ and measure its fluctuation,

$$\Delta(z,\mathbf{n}) = \frac{N(z,\mathbf{n}) - \bar{N}(z)}{\bar{N}(z)}.$$

This quantity is directly measurable. On small scales where fluctuations in the spacetime geometry can be neglected it is simply related to the density contrast $\delta = (\rho(\mathbf{x}, t) - \bar{\rho}(t))/\bar{\rho}(t)$.

On large scales, however, we have to take into account that

- the measured redshift is not simply the background redshift \bar{z} ,
- not only the number of galaxies but also the volume is distorted
- the angles we are looking into are not the ones into which the photons from a given galaxy arriving at our position have been emitted.

 $(z, \theta, \phi) = (z, \mathbf{n})$ + info about mass, spectral type...

We can count the galaxies inside a redshift bin and small solid angle, $N(z, \mathbf{n})$ and measure its fluctuation,

$$\Delta(z,\mathbf{n})=\frac{N(z,\mathbf{n})-\bar{N}(z)}{\bar{N}(z)}.$$

This quantity is directly measurable. On small scales where fluctuations in the spacetime geometry can be neglected it is simply related to the density contrast $\delta = (\rho(\mathbf{x}, t) - \bar{\rho}(t))/\bar{\rho}(t)$.

On large scales, however, we have to take into account that

- the measured redshift is not simply the background redshift \bar{z} ,
- not only the number of galaxies but also the volume is distorted
- the angles we are looking into are not the ones into which the photons from a given galaxy arriving at our position have been emitted.

 $(z, \theta, \phi) = (z, \mathbf{n})$ + info about mass, spectral type...

We can count the galaxies inside a redshift bin and small solid angle, $N(z, \mathbf{n})$ and measure its fluctuation,

$$\Delta(z,\mathbf{n})=\frac{N(z,\mathbf{n})-\bar{N}(z)}{\bar{N}(z)}.$$

This quantity is directly measurable. On small scales where fluctuations in the spacetime geometry can be neglected it is simply related to the density contrast $\delta = (\rho(\mathbf{x}, t) - \bar{\rho}(t))/\bar{\rho}(t)$.

On large scales, however, we have to take into account that

- the measured redshift is not simply the background redshift \bar{z} ,
- not only the number of galaxies but also the volume is distorted
- the angles we are looking into are not the ones into which the photons from a given galaxy arriving at our position have been emitted.

 $(z, \theta, \phi) = (z, \mathbf{n})$ + info about mass, spectral type...

We can count the galaxies inside a redshift bin and small solid angle, $N(z, \mathbf{n})$ and measure its fluctuation,

$$\Delta(z,\mathbf{n}) = \frac{N(z,\mathbf{n}) - \bar{N}(z)}{\bar{N}(z)}.$$

This quantity is directly measurable. On small scales where fluctuations in the spacetime geometry can be neglected it is simply related to the density contrast $\delta = (\rho(\mathbf{x}, t) - \bar{\rho}(t))/\bar{\rho}(t)$.

On large scales, however, we have to take into account that

- the measured redshift is not simply the background redshift \bar{z} ,
- not only the number of galaxies but also the volume is distorted
- the angles we are looking into are not the ones into which the photons from a given galaxy arriving at our position have been emitted.

We first define the redshift density fluctuation $\delta_z(\mathbf{n}, z)$ by

$$\delta_{z}(\mathbf{n}, z) = \frac{\rho(\mathbf{n}, z) - \bar{\rho}(z)}{\bar{\rho}(z)} = \frac{\frac{N(\mathbf{n}, z)}{V(\mathbf{n}, z)} - \frac{\bar{N}(z)}{V(z)}}{\frac{\bar{N}(z)}{V(z)}}$$

This together with the volume fluctuations, results in the directly observed number fluctuations

$$\Delta(\mathbf{n}, z) = \delta_z(\mathbf{n}, z) + \frac{\delta V(\mathbf{n}, z)}{V(z)}$$

Both these terms are in principle measurable and therefore gauge invariant. The calculation, especially of the second term is however quite involved.

$$\delta_{z}(\mathbf{n}, z) = \frac{\overline{\rho}(\overline{z}) + \delta\rho(\mathbf{n}, z) - \overline{\rho}(z)}{\overline{\rho}(z)} = \frac{\overline{\rho}(z - \delta z) + \delta\rho(\mathbf{n}, z) - \overline{\rho}(z)}{\overline{\rho}(z)}$$
$$= \frac{\delta\rho}{\overline{\rho}} - \frac{d\rho}{dz}\frac{\delta z}{\overline{\rho}} = \delta(\mathbf{n}, z) - 3\frac{\delta z}{1 + z}$$

$$\frac{\delta z}{1+z} = -(\mathbf{n} \cdot \mathbf{V} + \Psi)(\mathbf{n}, z) - \int_{t_{\mathrm{S}}}^{t_{\mathrm{O}}} (\dot{\mathbf{\Phi}} + \dot{\Psi}) dt$$

We first define the redshift density fluctuation $\delta_z(\mathbf{n}, z)$ by

$$\delta_{z}(\mathbf{n}, z) = \frac{\rho(\mathbf{n}, z) - \bar{\rho}(z)}{\bar{\rho}(z)} = \frac{\frac{N(\mathbf{n}, z)}{V(\mathbf{n}, z)} - \frac{\bar{N}(z)}{V(z)}}{\frac{\bar{N}(z)}{V(z)}}$$

This together with the volume fluctuations, results in the directly observed number fluctuations

$$\Delta(\mathbf{n}, z) = \delta_z(\mathbf{n}, z) + \frac{\delta V(\mathbf{n}, z)}{V(z)}$$

Both these terms are in principle measurable and therefore gauge invariant. The calculation, especially of the second term is however quite involved.

$$\delta_{z}(\mathbf{n}, z) = \frac{\bar{\rho}(\bar{z}) + \delta\rho(\mathbf{n}, z) - \bar{\rho}(z)}{\bar{\rho}(z)} = \frac{\bar{\rho}(z - \delta z) + \delta\rho(\mathbf{n}, z) - \bar{\rho}(z)}{\bar{\rho}(z)}$$
$$= \frac{\delta\rho}{\bar{\rho}} - \frac{d\rho}{dz}\frac{\delta z}{\bar{\rho}} = \delta(\mathbf{n}, z) - 3\frac{\delta z}{1 + z}$$

$$\frac{\delta z}{1+z} = -(\mathbf{n} \cdot \mathbf{V} + \Psi)(\mathbf{n}, z) - \int_{t_{S}}^{t_{O}} (\dot{\Phi} + \dot{\Psi}) dt$$

We first define the redshift density fluctuation $\delta_z(\mathbf{n}, z)$ by

$$\delta_{z}(\mathbf{n}, z) = \frac{\rho(\mathbf{n}, z) - \bar{\rho}(z)}{\bar{\rho}(z)} = \frac{\frac{N(\mathbf{n}, z)}{V(\mathbf{n}, z)} - \frac{\bar{N}(z)}{V(z)}}{\frac{\bar{N}(z)}{V(z)}}$$

This together with the volume fluctuations, results in the directly observed number fluctuations

$$\Delta(\mathbf{n}, z) = \delta_z(\mathbf{n}, z) + \frac{\delta V(\mathbf{n}, z)}{V(z)}$$

Both these terms are in principle measurable and therefore gauge invariant. The calculation, especially of the second term is however quite involved.

The first term is obtained easily by considering

$$\delta_{z}(\mathbf{n}, z) = \frac{\bar{\rho}(\bar{z}) + \delta\rho(\mathbf{n}, z) - \bar{\rho}(z)}{\bar{\rho}(z)} = \frac{\bar{\rho}(z - \delta z) + \delta\rho(\mathbf{n}, z) - \bar{\rho}(z)}{\bar{\rho}(z)}$$
$$= \frac{\delta\rho}{\bar{\rho}} - \frac{d\rho}{dz}\frac{\delta z}{\bar{\rho}} = \delta(\mathbf{n}, z) - 3\frac{\delta z}{1 + z}$$

$$\frac{\delta z}{1+z} = -(\mathbf{n} \cdot \mathbf{V} + \Psi)(\mathbf{n}, z) - \int_{t_{\mathrm{S}}}^{t_{\mathrm{O}}} (\dot{\Phi} + \dot{\Psi}) dt$$

We first define the redshift density fluctuation $\delta_z(\mathbf{n}, z)$ by

$$\delta_{z}(\mathbf{n}, z) = \frac{\rho(\mathbf{n}, z) - \bar{\rho}(z)}{\bar{\rho}(z)} = \frac{\frac{N(\mathbf{n}, z)}{V(\mathbf{n}, z)} - \frac{\bar{N}(z)}{V(z)}}{\frac{\bar{N}(z)}{V(z)}}$$

This together with the volume fluctuations, results in the directly observed number fluctuations

$$\Delta(\mathbf{n}, z) = \delta_z(\mathbf{n}, z) + \frac{\delta V(\mathbf{n}, z)}{V(z)}$$

Both these terms are in principle measurable and therefore gauge invariant. The calculation, especially of the second term is however quite involved.

The first term is obtained easily by considering

$$\delta_{z}(\mathbf{n}, z) = \frac{\overline{\rho}(\overline{z}) + \delta\rho(\mathbf{n}, z) - \overline{\rho}(z)}{\overline{\rho}(z)} = \frac{\overline{\rho}(z - \delta z) + \delta\rho(\mathbf{n}, z) - \overline{\rho}(z)}{\overline{\rho}(z)}$$
$$= \frac{\delta\rho}{\overline{\rho}} - \frac{d\rho}{dz}\frac{\delta z}{\overline{\rho}} = \delta(\mathbf{n}, z) - 3\frac{\delta z}{1 + z}$$

$$\frac{\delta z}{1+z} = -(\mathbf{n} \cdot \mathbf{V} + \Psi)(\mathbf{n}, z) - \int_{t_{S}}^{t_{O}} (\dot{\Phi} + \dot{\Psi}) dt$$

we arrive at

$$\delta_z(\mathbf{n},z) = \delta(\mathbf{n},z) + 3(\mathbf{V}\cdot\mathbf{n})(\mathbf{n},z) + 3\Psi(\mathbf{n},z) + 3\int_{t_S}^{t_O} (\dot{\Psi} + \dot{\Phi})(\mathbf{n},z(t))dt .$$

For the volume we use

$$dV = \sqrt{-g} \epsilon_{abcd} u^{a} dx^{b} dx^{c} dx^{d}$$
$$= \sqrt{-g} \epsilon_{abcd} u^{a} \frac{\partial x^{b}}{\partial z} \frac{\partial x^{c}}{\partial \varphi_{S}} \frac{\partial x^{d}}{\partial \varphi_{S}} \left| \frac{\partial(\theta_{S}, \varphi_{S})}{\partial(\theta_{O}, \varphi_{O})} \right| dz d\theta_{O} d\varphi_{O} = v dz d\theta_{O} d\varphi_{O}$$

To first order in the perturbations one finds

$$v = \frac{a^3 r^2 \sin \theta_0}{H} \left[1 - 3\phi + (\cot \theta_0 + \frac{\partial}{\partial \theta})\delta\theta + \frac{\partial \delta \phi}{\partial \phi} - \mathbf{v} \cdot \mathbf{n} + 2\frac{\delta r}{r} - \frac{d\delta r}{dt} + \frac{1}{H} \frac{d\delta z}{dt} \right]$$

The lengthy calculation of $\delta heta, \, \delta \phi \, \delta r$ along the perturbed geodesic finally yields

$$\Delta(\mathbf{n}, z) = \delta - 2\Phi + \Psi - \mathbf{V} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \left[\dot{\Phi} + \partial_r \Psi - \frac{d(\mathbf{V} \cdot \mathbf{n})}{dt} \right] + \left(\frac{\dot{\mathcal{H}}}{\mathcal{H}^2} + \frac{2}{r\mathcal{H}} \right) \left(\Psi + \mathbf{V} \cdot \mathbf{n} + \int_{t_{\mathrm{S}}}^{t_{\mathrm{O}}} dt (\dot{\Phi} + \dot{\Psi}) \right) + \frac{1}{r} \int_{t_{\mathrm{S}}}^{t_{\mathrm{O}}} dt \left[2 - \frac{t - t_{\mathrm{S}}}{(t_{\mathrm{O}} - t)} \Delta_{\mathrm{S}^2} \right] (\Phi + \Psi).$$

we arrive at

$$\delta_z(\mathbf{n},z) = \delta(\mathbf{n},z) + 3(\mathbf{V}\cdot\mathbf{n})(\mathbf{n},z) + 3\Psi(\mathbf{n},z) + 3\int_{t_S}^{t_O} (\dot{\Psi} + \dot{\Phi})(\mathbf{n},z(t))dt .$$

For the volume we use

$$dV = \sqrt{-g} \epsilon_{abcd} u^{a} dx^{b} dx^{c} dx^{d}$$

= $\sqrt{-g} \epsilon_{abcd} u^{a} \frac{\partial x^{b} \partial x^{c} \partial x^{d}}{\partial z \partial \theta_{S} \partial \varphi_{S}} \left| \frac{\partial(\theta_{S}, \varphi_{S})}{\partial(\theta_{O}, \varphi_{O})} \right| dz d\theta_{O} d\varphi_{O} = v dz d\theta_{O} d\varphi_{O}$

To first order in the perturbations one finds

$$v = \frac{a^3 r^2 \sin \theta_0}{H} \left[1 - 3\phi + (\cot \theta_0 + \frac{\partial}{\partial \theta})\delta\theta + \frac{\partial \delta \phi}{\partial \phi} - \mathbf{v} \cdot \mathbf{n} + 2\frac{\delta r}{r} - \frac{d\delta r}{dt} + \frac{1}{H}\frac{d\delta z}{dt} \right]$$

The lengthy calculation of $\delta\theta$, $\delta\phi$ δr along the perturbed geodesic finally yields

$$\Delta(\mathbf{n}, z) = \delta - 2\Phi + \Psi - \mathbf{V} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \left[\dot{\Phi} + \partial_r \Psi - \frac{d(\mathbf{V} \cdot \mathbf{n})}{dt} \right] + \left(\frac{\dot{\mathcal{H}}}{\mathcal{H}^2} + \frac{2}{r\mathcal{H}} \right) \left(\Psi + \mathbf{V} \cdot \mathbf{n} + \int_{t_{\mathrm{S}}}^{t_{\mathrm{O}}} dt (\dot{\Phi} + \dot{\Psi}) \right) + \frac{1}{r} \int_{t_{\mathrm{S}}}^{t_{\mathrm{O}}} dt \left[2 - \frac{t - t_{\mathrm{S}}}{(t_{\mathrm{O}} - t)} \Delta_{\mathrm{S}^2} \right] (\Phi + \Psi).$$

We can now expand $\Delta(\mathbf{n}, z)$ in spherical harmonics,

$$\Delta(\mathbf{n},z) = \sum_{\ell m} a_{\ell m}(z) Y_{\ell m}(\mathbf{n}), \quad C_{\ell}(z) = \langle |a_{\ell m}|^2(z) \rangle.$$

$$\langle a_{\ell m}(z)a^*_{\ell' m'}(z') \rangle = \delta_{\ell \ell'}\delta_{mm'}C_{\ell}(z,z').$$

The transversal power spectrum at redshift *z* is now given by the $C_{\ell}(z, z)$ and the longitudinal power spectrum can be obtained from $C_{\ell}(z, z')$ which probably can be approximated by $C_{\ell}(z)f(\Delta r)$ where $\Delta r = r(z) - r(z')$.

$$P_{\text{long}}(k) = \int e^{ik\Delta r} f(\Delta r) d\Delta r \; .$$

Theoretical power spectra in synchronous and Newtonian gauge (from Yoo et al. '09)

Contributions to the transverse power spectrum at redshift z = 0.1 (from Bonvin & RD '11)

 C_{ℓ}^{DD} (red), C_{ℓ}^{zz} (green), C_{ℓ}^{Dz} (blue), C_{ℓ}^{LL} (magenta), C_{ℓ}^{VV} (cyan), C_{ℓ}^{VV} (black), C_{ℓ}^{DV} (yellow).

Contributions to the transverse power spectrum at redshift z = 2 (from Bonvin & RD '11)

 C_{ℓ}^{DD} (red), C_{ℓ}^{zz} (green), C_{ℓ}^{Dz} (blue), C_{ℓ}^{LL} (magenta), C_{ℓ}^{VV} (cyan), C_{ℓ}^{VV} (black), C_{ℓ}^{DV} (yellow).

Contributions to the transverse power spectrum at redshift $\ell = 10$ and $\ell = 50$ (from Bonvin & RD '11)

The observable matter power spectrum δ_z (from Yoo '10)

Ruth Durrer (Université de Genève)

What are Newtonian N-body simulations simulating?

At present we have Hubble size N-body simulations which go out to redshifz $z \simeq 2$. What are such simulations really calculating? (Example: slice through 'MareNostrum', by Gottlöber et al. '06)

What are Newtonian N-body simulations simulating?

In principle, Newtonian N-body simulations are solving the Poisson equation in a clever way (initial conditions from linear perturbation theory, Zel'dovich approximation),

$$\Delta \phi = 4\pi G \delta \rho$$

Interestingly enough in linear perturbation theory (which is sufficient on large scales, where relativistic effects are most relevant), this is exactly the 00-constraint equation if we interpret δ as the matter density fluctuations in comoving gauge and ϕ as the Bardeen potential $\Phi = \Psi$ (in absence of anisotropic stresses). Hence the power spectrum obtained from Newtonian N-body simulation, agrees with the one of the density fluctuations in comoving gauge (see also Chisari & Zaldarriaga '11). This is related to the density fluctuation in longitudinal (or Newtonian) gauge via

$$\delta_{cm} = \delta_{Newt} + 3\mathcal{H}k^{-1}V$$

The velocity is obtained from the non-relativistic continuity equation, and from the eqn. of motion

$$\dot{\delta} = -\nabla \cdot \mathbf{v}, \quad \text{and} \quad \nabla \cdot \dot{\mathbf{v}} + \mathcal{H} \nabla \cdot \mathbf{v} = \Delta \phi$$

Interestingly, for pressureless matter this equation is exactly equal to the energy conservation equation if $\delta = \delta_{cm}$ and **v** is the velocity in Newtonian gauge, $\mathbf{v} = i\hat{\mathbf{k}}V$ in Fourier space.

What are Newtonian N-body simulations simulating?

In principle, Newtonian N-body simulations are solving the Poisson equation in a clever way (initial conditions from linear perturbation theory, Zel'dovich approximation),

$$\Delta \phi = 4\pi G \delta \rho$$

Interestingly enough in linear perturbation theory (which is sufficient on large scales, where relativistic effects are most relevant), this is exactly the 00-constraint equation if we interpret δ as the matter density fluctuations in comoving gauge and ϕ as the Bardeen potential $\Phi = \Psi$ (in absence of anisotropic stresses). Hence the power spectrum obtained from Newtonian N-body simulation, agrees with the one of the density fluctuations in comoving gauge (see also Chisari & Zaldarriaga '11). This is related to the density fluctuation in longitudinal (or Newtonian) gauge via

$$\delta_{cm} = \delta_{Newt} + 3\mathcal{H}k^{-1}V$$

The velocity is obtained from the non-relativistic continuity equation, and from the eqn. of motion

$$\dot{\delta} = -\nabla \cdot \mathbf{v}, \quad \text{and} \quad \nabla \cdot \dot{\mathbf{v}} + \mathcal{H} \nabla \cdot \mathbf{v} = \Delta \phi$$

Interestingly, for pressureless matter this equation is exactly equal to the energy conservation equation if $\delta = \delta_{cm}$ and **v** is the velocity in Newtonian gauge, $\mathbf{v} = i\hat{\mathbf{k}}V$ in Fourier space.

What do large galaxy surveys really measure:

- Is it possible to isolate some of terms in the formula for Δ(z, n), e.g. with complementary measurements?
- How can we measure pure volume distortions?
- Info in transversal vs. longitudinal power?
- Is $C_{\ell}(z, z')$ useful or should we stay with $P(k_{\perp})$ and $P(k_{\parallel})$?

What do large N-body simulations really calculate:

- Is it surprising that 1st order scalar relativistic perturbations agree with Newtonian gravity?
- Is this sufficient or do we need more?
- What happens at second order?