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Theoretical Cosmology

What is the observational basis of homogeneity and isotropy in cosmology?
Isotropy – CMB
Homogeneity – RM

What are very large scale galaxy catalogs really measuring?
What are very large scale N-body simulations simulating? – RD

How can we test general relativity in cosmology?
Is dark energy a manifestation of deviations from GR? – CS
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What are very large scale galaxy catalogs really measuring?

(See: Yoo et al. ’09, Yoo ’10, Bonvin and RD, in preparation ’11)
For each galaxy in a catalog we measure

(z, θ, φ) = (z, n) + info about mass, spectral type...

We can count the galaxies inside a redshift bin and small solid angle, N(z, n) and
measure its fluctuation,

∆(z, n) =
N(z, n) − N̄(z)

N̄(z)
.

This quantity is directly measurable. On small scales where fluctuations in the
spacetime geometry can be neglected it is simply related to the density contrast
δ = (ρ(x, t) − ρ̄(t))/ρ̄(t).

On large scales, however, we have to take into account that

the measured redshift is not simply the background redshift z̄,

not only the number of galaxies but also the volume is distorted

the angles we are looking into are not the ones into which the photons from a
given galaxy arriving at our position have been emitted.
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What are very large scale galaxy catalogs really measuring?

We first define the redshift density fluctuation δz(n, z) by

δz(n, z) =
ρ(n, z) − ρ̄(z)

ρ̄(z)
=

N(n,z)
V (n,z)

− N̄(z)
V (z)

N̄(z)
V (z)

This together with the volume fluctuations, results in the directly observed number
fluctuations

∆(n, z) = δz(n, z) +
δV (n, z)

V (z)

Both these terms are in principle measurable and therefore gauge invariant. The
calculation, especially of the second term is however quite involved.
The first term is obtained easily by considering

δz(n, z) =
ρ̄(z̄) + δρ(n, z) − ρ̄(z)

ρ̄(z)
=

ρ̄(z − δz) + δρ(n, z) − ρ̄(z)

ρ̄(z)

=
δρ

ρ̄
−

dρ

dz
δz
ρ̄

= δ(n, z) − 3
δz

1 + z

With
δz

1 + z
= −

`

n · V + Ψ
´

(n, z) −

Z tO

tS

(Φ̇ + Ψ̇)dt
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we arrive at

δz(n, z) = δ(n, z) + 3(V · n)(n, z) + 3Ψ(n, z) + 3
Z tO

tS

(Ψ̇ + Φ̇)(n, z(t))dt .

For the volume we use

dV =
p

−g ǫabcd uadxbdxcdxd

=
p

−g ǫabcdua∂xb

∂z
∂xc

∂θS

∂xd

∂ϕS

˛

˛

˛

˛

∂(θS, ϕS)

∂(θO, ϕO)

˛

˛

˛

˛

dzdθO dϕO = vdzdθO dϕO

To first order in the perturbations one finds

v =
a3r2 sin θO

H

»

1 − 3φ + (cot θO +
∂

∂θ
)δθ +

∂δφ

∂φ
− v · n + 2

δr
r

−
dδr
dt

+
1
H

dδz
dt

–

The lengthy calculation of δθ, δφ δr along the perturbed geodesic finally yields

∆(n, z) = δ − 2Φ + Ψ − V · n +
1
H

»

Φ̇ + ∂rΨ −
d(V · n)

dt

–

+

„

Ḣ

H2
+

2
rH

«

 

Ψ + V · n +

Z tO

tS

dt(Φ̇ + Ψ̇)

!

+
1
r

Z tO

tS

dt
»

2 −
t − tS

(tO − t)
∆S2

–

(Φ + Ψ).
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What are very large scale galaxy catalogs really measuring?

We can now expand ∆(n, z) in spherical harmonics,

∆(n, z) =
X

ℓm

aℓm(z)Yℓm(n), Cℓ(z) = 〈|aℓm|
2(z)〉.

〈aℓm(z)a∗
ℓ′m′(z′)〉 = δℓℓ′δmm′Cℓ(z, z′) .

The transversal power spectrum at redshift z is now given by theCℓ(z, z) and the
longitudinal power spectrum can be obtained from Cℓ(z, z′) which probably can be
approximated by Cℓ(z)f (∆r) where ∆r = r(z) − r(z′).

Plong(k) =

Z

eik∆r f (∆r)d∆r .
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What are very large scale galaxy catalogs really measuring?

Theoretical power spectra in synchronous and Newtonian gauge (from Yoo et al. ’09)
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What are very large scale galaxy catalogs really measuring?

Contributions to the transverse power spectrum at redshift z = 0.1
(from Bonvin & RD ’11)

50 100 150 200
10-7

10-5

0.001

0.1

10

l

lH
l+

1L
�2
Π

C
l

CDD
ℓ (red), Czz

ℓ (green), CDz
ℓ (blue), CLL

ℓ (magenta), CVV
ℓ (cyan),

CzV
ℓ (black), CDV

ℓ (yellow).
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What are very large scale galaxy catalogs really measuring?

Contributions to the transverse power spectrum at redshift z = 2
(from Bonvin & RD ’11)
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What are very large scale galaxy catalogs really measuring?

Contributions to the transverse power spectrum at redshift ℓ = 10 and ℓ = 50
(from Bonvin & RD ’11)
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What are very large scale galaxy catalogs really measuring?

The observable matter power spectrum δz (from Yoo ’10)
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What are Newtonian N-body simulations simulating?

At present we have Hubble size N-body simulations which go out to redshifz z ≃ 2.
What are such simulations really calculating?
(Example: slice through ’MareNostrum’, by Gottlöber et al. ’06)
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What are Newtonian N-body simulations simulating?

In principle, Newtonian N-body simulations are solving the Poisson equation in a clever
way (initial conditions from linear perturbation theory, Zel’dovich approximation),

∆φ = 4πGδρ

Interestingly enough in linear perturbation theory (which is sufficient on large scales,
where relativistic effects are most relevant), this is exactly the 00-constraint equation if
we interpret δ as the matter density fluctuations in comoving gauge and φ as the
Bardeen potential Φ = Ψ (in absence of anisotropic stresses). Hence the power
spectrum obtained from Newtonian N-body simulation, agrees with the one of the
density fluctuations in comoving gauge (see also Chisari & Zaldarriaga ’11). This is
related to the density fluctuation in longitudinal (or Newtonian) gauge via

δcm = δNewt + 3Hk−1V

The velocity is obtained from the non-relativistic continuity equation, and from the eqn.
of motion

δ̇ = −∇ · v, and ∇ · v̇ + H∇ · v = ∆φ

Interestingly, for pressureless matter this equation is exactly equal to the energy
conservation equation if δ = δcm and v is the velocity in Newtonian gauge, v = i k̂V in
Fourier space.
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Questions

What do large galaxy surveys really measure:
Is it possible to isolate some of terms in the formula for ∆(z, n), e.g. with
complementary measurements?

How can we measure pure volume distortions?

Info in transversal vs. longitudinal power?

Is Cℓ(z, z′) useful or should we stay with P(k⊥) and P(k‖)?

What do large N-body simulations really calculate:
Is it surprising that 1st order scalar relativistic perturbations agree
with Newtonian gravity?

Is this sufficient or do we need more?

What happens at second order?
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