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What is the basis for homogeneity? 
We cannot observe homogeneity, only isotropy 
 
 
 
 
 
SDSS: z ~ 0.3 
 
 
 
 
 
CMB: z ~ 1100 
 
 
 
 
 
 

     
  



 
 
What do (perfect) observations tell us? 

     
 (I) Without assuming the Copernican Principle: 
  (I.1) What do observations tell us directly 

   - for any gravity theory? 
   - for GR? 

  (I.2) What can we say from isotropy of 
   - matter observations? 
   - the CMB? 

(II) With the Copernican Principle: 
  (II.1) What do isotropic matter observations tell us? 

 (II.2) What do isotropic CMB observations tell us? 
 
(III) Testing the Copernican Principle 
(IV)  Towards the real Universe 
 
 

CP: we are not at a 
special position in the 
universe 



(I) Without the Copernican Principle 
   
(I.1) What do observations tell us directly? 
 

Try to determine spacetime geometry from lightcone 
observations.    (Ellis 1975; Ellis, Nel, RM et al 1985) 
 

Problem: CDM and DE cannot be directly observed.  
   

(Gravitational lensing? – only determines matter if 
geometry is assumed a priori.) 

Assume we the know ‘missing’ baryon distribution, and 
 
   CDM 
 
   DE 
 
 

 



Observational coordinates in a general spacetime 
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Metric in observational coordinates 
 
 
 
 
 
 
 
 
 
 
Matter 4-velocity 
 
 
 
                                             transverse velocities 
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Lensing convergence and shear in a general spacetime: 
 
 
 
 
 

           (Ricci) 
 
 
 

            (Weyl) 
 
Number counts in a general spacetime: 
 

        B=dv/dz, n=ρ/m 
 
 
 
 
                                              

    



(I.1a) What do observations tell us directly  
- without field equations?      

 
In principle, for ideal observations: 

 * standard candles/ sirens/ rulers give D  
 

 * number counts give  Bρm       
     from galaxy surveys on lightcone 
     (+ assumptions on CDM) 
  
 * lensing shear gives LIJ 
     if we know intrinsic shapes 
  
  * transverse motions give V I   
   ? 

   
 

 



 
 
 
The maximum achievable in principle 
 
 
 
 
We cannot determine our past lightcone without field 

equations. Thus: 
 
•  Observations cannot directly test GR on          

cosmological scales (or any modified gravity) 
•  We need to assume the spacetime geometry first 

  



 
We also get an interesting test for transverse velocities: 
 
Anisotropy in the observed Hubble parameter implies that 

the transverse velocities are nonzero 
 
 
 
 
 
  
 
 
 
(RM 1980; RM, Matravers 1994) 
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(I.1b) What do observations tell us directly - with GR? 
   

 
1.                                        

  
 is exactly the data needed on the past lightcone for EFE to 
uniquely determine the 

 
 
   on the past lightcone. 

  
 
 
 
   
 

 (Ellis, Nel, RM et al 1985) 

 

 
 
 
2. Then EFE propagate off the 

lightcone to determine the 
interior (past)    

   

 
  



 
3. EFE cannot propagate to the 

future since new data can 
destroy the predictions   

   



(I.2a) What can we say from isotropy  
of matter observations? 

 

Isotropic matter observations: 
 
 
 
This is exactly enough to produce isotropic geometry: 
 
Matter isotropy on lightcone gives isotropy of geometry 
•  If one observer comoving with matter sees isotropic 

angular distances, number counts, bulk velocities and 
lensing, in a dust Universe with Λ, then spacetime is 
isotropic, i.e. LTB 

 
 
(Ellis, Nel, RM et al 1984; RM, Matravers 1994) 
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(I.2b) What can we say from isotropy  of the CMB? 
 

  
 
Seems obvious that this enforces isotropy of the spacetime. 
It is plausible: we expect isotropic decoupling surfcae, which 

then evolves to isotropic future. 
But this does not follow from Einstein-Liouville equations (at 

least not in any obvious way) 
 
We cannot deduce isotropy  

 of the geometry, without  
 further assumptions on 
 the matter 

 
 



(II) With the Copernican Principle 
   
Without the CP, we cannot establish homogeneity: 
homogeneity cannot be directly observed in the matter or CMB 

  
(II.1) What do isotropic matter observations tell us? 
 
Isotropy about all observers implies homogeneity: 
 
 
 
 
 
 
 
An observational basis for the Cosmological Principle 
 



  
 A more powerful result 

 
 
Isotropy of area distances alone, and for small z, about all 

observers - implies homogeneity: 
 
Isotropic distances to 3rd order in z imply FLRW 
•  In a dust region of a Universe with Λ, if all fundamental 

observers measure isotropic distances to O(z3), then 
spacetime is FLRW in that region 

 
 
 
(Hasse, Perlick  1999; Clarkson 2000; Clarkson, RM 2010) 
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 Series expansion (Kristian, Sachs 1966): 

 
 
 
 
 
 
 
 
where 
 
 
O(z): 
 
 
Isotropy:     etc. 
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 (II.2) What do isotropic CMB observations tell us? 
 
CMB isotropy for all fundamental observers gives the 

strongest basis that we have for homogeneity 
History: 1968 theorem by Ehlers, Geren, Sachs (EGS) 
Update: generalize to include baryons, CDM and DE 
 



It seems obvious that we should get FLRW – but we have to 
show it using the general, fully nonlinear Einstein-Liouville 
equations. 

Nonlinear perturbations are not an option – we cannot assume 
the FLRW background that we are trying to prove. 

 
 
 
 
 
 
 
(EGS 1968; Ellis, Treciokas 1971; Stoeger, RM, Ellis 1995; Ferrando, Morales, Portilla 1999;   

Clarkson, Barrett 1999; Clarkson, Coley 2001; Rasanen 2009; Clarkson, RM 2010) 

 
Note: It follows that (1) matter and DE have the same 4-

velocity as radiation (2) matter, DE anisotropic stress =0  
 

 
 
 
 
 
 

  
  



  
Liouville equation in any spacetime 

 
 Liouville: 

 
 
 

 Covariant harmonics: 
 
 
 
 

 Integrated multipoles: 
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General intensity multipoles:    
 
Lowest ones 
 
 
 
Then Liouville becomes: 
 
 
 
 
 
 

    
 

   (Ellis, Treciokas, Matravers 1984; RM, Gebbie, Ellis 1999) 

 



  
Quadrupole evolution in a general spacetime: 
 
 
 
 
 
where 
 

Then we get zero shear: 
 
Momentum conservation: 
Then 
 
 
 
etc 
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  More powerful result: 

 
 
 
  
 
 
 
 
 

 Ellis, Treciokas, Matravers 1985 (ETM theorem – generalized in Clarkson, RM 2010) 

 
This is the best basis we have for (exact) homogeneity 
 



  (III) Testing the Copernican Principle 
 
The CP is the foundation of theoretical homogeneity.  

Can we test it? 
* Sunyaev-Zeldovich tests 

 Scattered photons  
 at distant clusters  
 will distort the CMB  
 blackbody spectrum  
 if there is anisotropy  
 at the cluster 
  

(Goodman 1995; Caldwell, Stebbins 2008) 
 



   
* Constancy of curvature 

 A consistency test for homogeneity (Clarkson, Bassett, Lu 2009) 
 
Luminosity distance 
 
 
implies 
 
 
 

Differentiate the constant curvature. Then the quantity 
 
 
 
 
 

vanishes identically in Robertson-Walker spacetimes  
(for any matter content and any field equations) 

 
 



  
(IV) Towards the realistic situation 

 
(IV.1) The CMB is almost isotropic 
 
Partial result – we get almost-homogeneity if we make 

additional assumptions 
 
 
  
 
 
 
 
(Stoeger, RM, Ellis 1995) 
 

Open question: can we remove the assumptions on 
derivatives using other observations? 

(Nilsson et al 1999; Clarkson et al 2003; Rasanen 2009; Clarkson, RM 2010) 
 
 



  
(IV.2) We also need: 
 

•  A statistical approach to isotropy  

•  A statistical formulation of the CP 

•  A better understanding of light propagation in a lumpy 

Universe 

•  A better understanding of how we average over 

inhomogeneities  



Summary 
 

What is the basis for homogeneity in the idealized case? 
     

 (I) Without assuming the Copernican Principle: 
  (I.1) What do observations tell us directly 

   - for any gravity theory? VERY LITTLE 
   - for GR?                      PAST LIGHTCONE  + INTERIOR 

  (I.2) What can we say from isotropy of 
   - matter observations?    LTB GEOMETRY 
   - the CMB?                    VERY LITTLE 

(II) With the Copernican Principle: WE CAN TEST IT  
  (II.1) What do isotropic matter observations tell us? FLRW 

 (II.2) What do isotropic CMB observations tell us?    FLRW 
 
Open problems of the realistic case: almost-isotropy, etc. 
 


