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Outline

* The unitary limit of quantum gases
e S-matrix based approach to thermodynamics

e Application to the unitary limit

e Hubbard model.

(unitary gases work done with Pye-ton How, 2010, JSTAT)




~N

i
Motivations:
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e Intriguing examples of scale invariant theories
with z=2 dynamical exponent (Schrodinger
symmetry).

e experimental realizations: cold atoms tuned
through a Feshbach resonance.

e surface of neutron stars.

e non-relativistic AdS/CFT description? Is there
a bound on shear viscosity to entropy density?
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Unitary limit of quantum gases
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Model actions for bosons and fermions:
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Renormalization group:

flows to low energy:

unitary limit
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[ d=3 case: J

o at the fixed point, a=scattering length diverges.

e z=2 scale invariant theory. Only energy scales
are the chemical potential and temperature.

e On BEC side, the 2-fermion bound state can
condense.

e BCS side well described by BCS theory at small
coupling. (no bound state on this side.)

e in unitary limit: Very strongly coupled. No
small parameter like na

e new methods are needed.
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motivate the method

T d=1 case
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S-matrix: )il
k—Fk +ig/4

Unitary limit:

Turns out to be a free fermion. Difhcult to see
perturbatively, but clear from the TBA.




(Thermodynamic Bethe Ansatz in 1d
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free energy:

1 :
ElE 3 / dk' K (k, k) log (1 ity >)

8=1/T

K = ——Zﬁk log S

Wy = k2 / 2m = single particle energy

In the unitary limit, just a free fermion.




" The formalism: a TBA-like approach

in any dimension
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density: n=—0,F = / (;lil; - f (k)

Making a LLegendre transformation in the chemical
potential and occupation number f, one can show
there exists a functional F where the free energy is

given by:
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variational principle:




Starting point:
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(Dashen, Ma, Bernstein, 1969)

Can derive: F=Fo+ Fi

energy entropy

Fo= [ 52 (@e=mf = 5107 - 1)log(1 - ) - f1og.1])

(2m)? e

F=E-TS
(see Landau-Lifshitz)
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(keep only 2-body terms)
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Final result. Variational principle gives:
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pseudo-energy integral eqn
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(different signs for bosons) 11 = chemical potential
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Structure of the kernel G
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S-matrix

Y e 1
Bl / ( i =L+ 27y (1-loop integral)
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renormalized coupling: JRr

E and K are the total energy and momentum of the 2 particles

! Non -perturbative, well-defined expansion in 1/g !
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Application to 3d unitary gas
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W,

L ) — ,
Gk K) = —i 8 Lo (1/gR zm|k k'| /167
m|k — k| 1/gr +im|k — K| /167

scattering length: a=mgr/2n

S-matrix: hipd |
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bound state no bound state

4 =400 (repulsive) a = —oo (attractive)

Q72

'm|k — k|

(e

-/+ corresponds to repulsive/attractive

(for smallg, G =-g)



Unitary limit 1in 2d

* Formally define it as S=-1, i.e. coupling goes to
infinity.

e not an RG fixed point in usual sense, but still
scale invariant. Occurs at very low energies
(infinitely attractive) or very high energy:.
(infinitely repulsive).

The kernel becomes a constant and the integral
equation 18 transcendentally algebraic!

Ax

G(lkl) =

T
4 cases: attractive/repulsive bosons/fermions
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Results
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Scale invariance implies the scaling form:

T c=1 for

R G e T e

at zero chem.pot.

Critical points must occur at fixed values of 4/ T’
These points can be expressed as:

n)\dc = constant (bosons) Ar = +/21/mT.

Tc / TF — constant (fermions)
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Fermions
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Entropy per particle for fermions
s/n
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050 critical point

0.4

T./Tr = 0.1.

consistent with lattice Monte Carlo
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Bosons
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Evidence for an interacting version of BEC (new)

DAL Y (e DA

compare with non-interacting BEC:

gii=rliandiniiN-l = 1031/ 2)1 = 2.6,




Occupation number for bosons

diverges

Compressibility for bosons
KT (mT)3/?
250

diverges
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Viscosity to entropy density ratio

Viscosity/entropy for attractive fermions
n/s
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In good agreement with experiments




Viscosity to entropy ratio for bosons

TS 1.6

S 47’(’]{3

a more perfect fluid than fermions




High Temperature Superconductivity

Schematic phase diagram of hole-doped cuprates
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d-wave superconductor
(dSC)

0.10 B 5 0.30
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3d AF MI ECG - 3-d metal

Not here (doping a Mott insulator)



'Hubbard Model Gas

H = —t Z (cii,acrj,a) Lt Z (Cii,acrj,oz) H Uananl

<i,j>,a:T7l <’l:,j>/,Oé:T,l

diagonalize free part treat as local

*free, single particle energies:

wx = —2t (cos(kya) + cos(kya)) — 4t' cos(kya) cos(k,a)

* can treat as a gas with coupling g = Ut

Cuprates: t'~—-03,  g=13
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Ut =5

repulsive

— U/t=13514
N’r: 15

Conclusion: for t’=-0.3, g must be greater than
12.8 for an attractive band to exist.




[g=15, t'=0, -0.1, -0.3, -0.4J




Fermi surfaces for hole doping h=o0, .1, .2, .3, .4

Attractive band in pink




?? Can we see the phase transitions ??
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h’?

hole doping

Dark regions: no solution to pseudogap equation
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T./t ~ 0.02
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