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• The unitary limit of quantum gases 

• S-matrix based approach to thermodynamics

• Application to the unitary limit 

• Hubbard model. 

(unitary gases work done with Pye-ton How,  2010,  JSTAT)



Motivations:

• Intriguing examples of  scale invariant theories 
with z=2 dynamical exponent (Schrodinger 
symmetry).

• experimental realizations:  cold atoms  tuned 
through a Feshbach resonance. 

• surface of neutron stars. 

• non-relativistic AdS/CFT description?   Is there 
a bound on shear viscosity to entropy density?

considered before in the literature.

In the next section we describe the unitary limit in 2 and 3 dimensions and its

relation to the renormalization group. In section III, we define the interesting scaling

functions for the free energy and single-particle energies by normalizing with respect

to free theories. In section IV we describe the unitary limit of the formalism in [18] in

both two and three dimensions, where the integral equation becomes scale invariant.

The d = 2 case is especially simple since the kernel reduces to a constant and the

integral equation becomes algebraic. Analysis of these equations in 2d is carried out

for both infinitely repulsive or attractive fermions and bosons in sections V-VIII.

Multiple species of possibly mixed bosonic and fermionic particles is considered in

section IX.

Kovtun et. al. conjectured that there is a universal lower bound to the ratio of

the shear viscosity to the entropy density,

η/s ≥
!

4πkB
(1)

where kB is Boltzmann’s constant[22]. This was based on the AdS/CFT correspon-

dence for relativistic theories in 3 spatial dimensions, and the bound is saturated

for certain supersymmetric gauge theories. Counterexamples to the η/s bound are

typically non-relativistic. It thus interesting to study this ratio for non-relativistic

theories, and in particular for 2d theories where no conjecture exists. We analyze

η/s for the attractive fermionic case as a function of µ/T in section VI. Whereas

η/s is significantly larger than 1/4π for small µ/T , in the zero temperature limit

for constant positive chemical potential, η/s ∝ 1/ log(µ/T ) and can in prinicple be

arbitarily small. It is close to the bound when µ/T ≈ 4 × 106. All other cases

of attractive/repulsive bosons and repulsive fermions satisfy the bound, with the

attractive boson coming closest to it, η/s ≥ 1.71!/4πkB.
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Unitary limit of quantum gases

Model actions for bosons and fermions: 

II. RENORMALIZATION GROUP AND THE UNITARY LIMIT

The models considered in this paper are the simplest models of non-relativistic

bosons and fermions with quartic interactions. The bosonic model is defined by the

action for a complex scalar field φ.

S =

∫
ddxdt

(

iφ†∂tφ −
|#∇φ|2

2m
−

g

4
(φ†φ)2

)

(2)

(Throughout this paper, d refers to the number of spatial dimensions). For fermions,

due to the fermionic statistics, one needs at least a 2-component field ψ↑,↓:

S =

∫
ddxdt

(
∑

α=↑,↓

iψ†
α∂tψα −

|#∇ψα|2

2m
−

g

2
ψ†
↑ψ↑ψ

†
↓ψ↓

)

(3)

In both cases, positive g corresponds to repulsive interactions.

The bosonic theory only has a U(1) symmetry. The fermionic theory on the other

hand has the much larger SO(5) symmetry. This is evident from the work[24] which

considered a relativistic version, since the same arguments apply to a non-relativistic

kinetic term. This is also clear from the work[15] which considered an N -component

version with Sp(2N) symmetry, and noting that Sp(4) = SO(5).

The free versions of the above theories have a scale invariance with dynamical

exponent z = 2, i.e. are invariant under t → Λ−2t, x → Λ−1x. At a renormalization

group fixed point, i.e. quantum critical point, the model is expected to have the

same scale invariance. It is natural to define scaling dimensions dim[X] in units of

inverse length or wave-vector k, i.e. dim[k] = 1, dim[x] = −1, and dim[t] = −2.

Requiring the action to have zero scaling dimension gives dim[φ] = dim[ψ] = d/2

and dim[g] = 2 − d. The interaction is thus relevant for d < 2.
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Renormalization group:

g

g

g

0
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d<2
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g∗

g∗

g∗

FIG. 1: Renormalization group flows; arrows indicate the flow to low energy.

The S-matrix (4) has a pole at k = 16πi/mgR. Since physical bound states

correspond to poles at Im(k) > 0, the bound state exists only on BEC side of the

critical point, with energy

Ebound−state = −
128π2

m3g2
R

(10)

In the BEC to BCS crossover from 1/a = 0+ to 1/a = 1/0− the binding energy goes

to zero and the bound state disappears. Nevertheless, the crossover is expected to

be smooth, if on the BEC side one includes the bound state in the thermodynamics.

B. 2d case

The d = 2 case is somewhat more subtle due to the marginality of the coupling

g. The fixed point ĝ∗ = 0 and the RG flows are depicted in Figure 1. The fixed
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flows to low energy:

unitary limit



• at the fixed point,  a=scattering length diverges.  

• z=2 scale invariant theory.  Only energy scales 
are the chemical potential and temperature. 

• On BEC side, the  2-fermion bound state can 
condense.  

• BCS side well described by BCS theory at small 
coupling.  (no bound state on this side.)   

• in unitary limit:    Very strongly coupled.   No 
small parameter like   

• new methods are needed. 

 d=3 case:

I. INTRODUCTION

na3
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d=1 case

I. INTRODUCTION

na3

S =
k − k′ − ig/4

k − k′ + ig/4

g →∞

S → −1
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S-matrix:

Unitary limit:      

motivate the method
with the:

Turns out to be a free fermion.  Difficult to see 
perturbatively,  but clear from the TBA.



Thermodynamic  Bethe Ansatz in 1d 

free energy:

In the unitary limit,  just a free fermion.

I. INTRODUCTION

na3

S =
k − k′ − ig/4

k − k′ + ig/4

g →∞

S → −1

F = − 1

β

∫
dk log

(
1 + e−βε(k)

)

ε(k) = ωk −
1

β

∫
dk′K(k, k′) log

(
1 + e−βε(k′)

)

K = −i∂k log S

ωk = k2/2m

2

I. INTRODUCTION

na3

S =
k − k′ − ig/4

k − k′ + ig/4

g →∞

S → −1

β = 1/T

µ = chemical potential

F = − 1

β

∫
dk log

(
1 + e−βε(k)

)

ε(k) = ωk −
1

β

∫
dk′K(k, k′) log

(
1 + e−βε(k′)

)

K = −i∂k log S

ωk = k2/2m

n = −∂µF =

∫
ddk

(2π)d
f(k)

ε(k) = ωk − µ−
∫

ddk

(2π)d
G(k,k′)

1

eβε(k′) + 1

2πδ (E − ωk − ωk′) V G(k,k′) = −i < k,k′| log Ŝ(E)|k,k′ >

2

= single particle energy



The formalism:  a TBA-like approach 
                in any dimension

I. INTRODUCTION
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density: 

Making a Legendre transformation in the chemical 
potential and occupation number  f,  one can show 
there exists a functional   F  where the free energy is 
given by:

IV. LEGENDRE TRANSFORMATION AND INTEGRAL EQUATION

A. Generalities

Given F(µ), one can compute the thermally averaged number density n:

n = −
∂F

∂µ
≡

∫
(dk) f(k) (46)

The dimensionless quantities f are called the filling fractions or occupation numbers.

One can express F as a functional of f with a Legendre transformation. Define

G ≡ F(µ) + µ n (47)

Treating f and µ as independent variables, then using eq. (46) one has that ∂µG = 0

which implies it can be expressed only in terms of f and satisfies δG/δf = µ.

Inverting the above construction shows that there exists a functional !(f, µ)

!(f, µ) = G(f) − µ

∫
(dk)f(k) (48)

which satisfies eq. (46) and is a stationary point with respect to f :

δ!

δf
= 0 (49)

The above stationary condition is to be viewed as determining f as a function of µ.

The physical free energy is then F = ! evaluated at the solution f to the above

equation. We will refer to eq. (49) as the saddle point equation since it is suggestive

of a saddle point approximation to a functional integral. The function ! is also

required to satisfy
∂!

∂µ
= −

∫
(dk) f(k) (50)

In the sequel, it will be convenient to trade the chemical potential µ for the

variable f0. We will need:
∂f0

∂µ
= βf0(1 + sf0) (51)

17

variational principle:



theory of scattering where E is an off-shell energy variable. It can be expressed in

the conventional manner:

Ŝ(E) = 1 + 2πi δ(E − H0) T̂ (E) (19)

where H0 is the free hamiltonian operator and everywhere the over-hat de-

notes a quantum operator. On shell the matrix elements of T̂ (E) are T =

(2π)dδ{k,k′}M{k}→{k′} where M are the scattering amplitudes.

Our starting point is the basic formula derived in [9]:

Z = Z0 +
1

4πi

∫ ∞

0

dEe−βETr
(
Ŝ−1

↔

∂EŜ
)

(20)

where X
↔

∂EY = X(∂EY ) − (∂EX)Y , and Z0 is the free partition function. We will

work with the equivalent expression[12]:

Z = Z0 +
1

2π

∫
dE e−βE Tr Im ∂E log Ŝ(E) (21)

Since log Ŝ(E) ∝ δ(E − H0), let us define the operator W as follows:

Im log Ŝ(E) ≡ 2πδ(E − H0) W (E) (22)

Integrating by parts, one then has

Z =

∫
dE e−βE Tr (δ(E − H0)(W(E)β + 1)) (23)

The advantage of the above expression is that in taking the trace, H0 can be replaced

with the free particle energies and the integral over E performed. For simplicity of

notation, define

Ŵ ≡ Wβ + 1 (24)

9

Starting point:

(Dashen, Ma, Bernstein,  1969)

Can derive: 

ingredients in these two papers.

The starting point is a formal expression for the partition function Z in terms of

the S-matrix derived in [? ]:

Z = Z0 +
1

2π

∫
dEe−βE Im∂E log Ŝ(E) (20)

where Ŝ(E) is the off-shell S-matrix operator, Z0 the free partition function, and

β = 1/T . Although the above formula is simple enough, a considerable amount of

additional work is needed to obtain something useful out of it. For instance the clus-

ter decomposition property of the S-matrix is needed to show that Z exponentiates

to an extensive free energy.

Consider for simplicity a single species of fermions. The basic dynamical variables

are the occupation numbers f which determine the density:

n =

∫
d2k

(2π)2
f(k) (21)

Using a Legendre transformation in the variables n and µ, where µ is the chemical

potential, one can show that there exists a functional !(f) such that the physical

free energy follows from the variational principle δ!/δf = 0. This functional can be

separated into a free part !0 and an interacting part !1,

! = !0 + !1 (22)

The interacting part contains N-body interaction terms for all N ≥ 2. If the particles

are sufficiently dilute, one expects the 2-body term to be the most important, and is

of the form:

!1 = −
1

2

∫
d2k

(2π)2

∫
d2k′

(2π)2
f(k′) G(k,k′) f(k) (23)

In [? ], certain terms in (??) (referred to as ZB terms) were incorrectly dropped.

This was corrected in [? ], which led to the expression in the last section for the

kernel G.
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The primary difference of the two works [? ? ] is the choice of !0. The choice

made in [? ] was better suited to the diagrammatic expansion, and the resulting

integral equation effectively sums up an infinite number of diagrams. However it

was found for the present problem that this integral equation only has solutions in

a very limited range of temperature and chemical potential, indicating that the sum

of diagrams does not converge. In contrast, it turns out the choice of !0 made in [?

] does not suffer from this problem. The latter !0 also has an appealing physical

interpretation, as we now explain. Consider

!0 =

∫
d2k

(2π)2

(
(ωk − µ)f −

1

β
[(f − 1) log(1 − f) − f log f ]

)
(24)

where ωk is the 1-particle energy of the free theory. The above expression can be

interpreted as

!0 = ε − Ts (25)

where ε is the first (ω − µ)f term and represents the energy density. The remaining

term represents the entropy density s[? ]. This choice of !0 also more closely parallels

the derivation of the thermodynamic Bethe ansatz[? ].

Let us parameterize the occupation numbers in terms of a pseudo-energy ε:

f(k) =
1

eβε(k) + 1
(26)

Then the variational equation δ!/δf = 0 can be expressed in the simpler form:

ε(k) = tωk − µ − t

∫
d2k′

(2π)2
G(k,k′)

1

eβε(k′) + 1
(27)

(We have restored the hopping coupling t here.) Using the above equation in !, the

free energy density F can be expressed as

F = −T

∫
d2k

(2π)2

[
log(1 + e−βε) +

β

2

1

eβε + 1
(ε − ω + µ)

]
(28)
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2

(keep only 2-body terms)

          F = E - TS
(see Landau-Lifshitz)

entropyenergy
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Final result.  Variational principle gives:

(different signs for bosons)
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pseudo-energy integral eqn



Structure of the kernel G

where ε is small and positive. It should be emphasized that this is the exact two-body

scattering amplitude, and this is possible because the model is non-relativistic. In

the numerical analysis below we set ε = 0.001. Using Im(x + iε)−1 = −πδ(x), one

sees that

L = I + iγ (14)

where I the phase space factor in eq. (??) and is real and positive, and γ is its

imaginary part. Putting all of this together one has

G = −
i

2I
log

(
1/gR − iI/2

1/gR + iI/2

)
(15)

The imaginary part of the loop integral renormalizes the coupling g

gR =
g

1 − gγ/2
(16)

Note that the manner in which gR enters the kernel leads to well defined large coupling

expansion in 1/gR; this was exploited for unitary quantum gases in [? ].

The argument of the log in eq. (??) can be identified as the 2-body S-matrix,

which is unitary, i.e. S∗S = 1. Since this S-matrix is exact to all orders in g, the

thermodynamic formalism we will use embodies some non-perturbative aspects of

the problem, although it still represents an approximation to the thermodynamics,

as explained in more detail in the next section.

B. Origin of attractive interactions

The kernel G by construction is real. For small coupling g, G is independent of

momentum and equal to −g/2. Thus G may be viewed as an effective, momentum-

dependent coupling constant, and provides valuable information on the effective 2-

body interactions at zero temperature. When G is negative the interactions are

effectively repulsive, otherwise they are attractive. The important point is that the
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thermodynamic formalism we will use embodies some non-perturbative aspects of

the problem, although it still represents an approximation to the thermodynamics,

as explained in more detail in the next section.

B. Origin of attractive interactions

The kernel G by construction is real. For small coupling g, G is independent of

momentum and equal to −g/2. Thus G may be viewed as an effective, momentum-

dependent coupling constant, and provides valuable information on the effective 2-

body interactions at zero temperature. When G is negative the interactions are

effectively repulsive, otherwise they are attractive. The important point is that the
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g∗ is approached. When g = g−∗ , i.e. just less than g∗, then a → ∞, whereas when

g = g+∗ , a → −∞. The case gR = −∞ is on the BCS side of the crossover, whereas

gR = +∞ is on the BEC side. See Figure 1.

g

g

g

0

0

0

d>2

d<2

d=2

BCSBEC

g∗

g∗

g∗

FIG. 1: Renormalization group flows; arrows indicate the flow to low energy.

The S-matrix (4) has a pole at k = 16πi/mgR. Since physical bound states

correspond to poles at Im(k) > 0, the bound state exists only on the BEC side of

the critical point, with energy

Ebound−state = −
128π2

m3g2R
(10)

In the BEC to BCS crossover from 1/a = 0+ to 1/a = 1/0− the binding energy goes

to zero and the bound state disappears. Nevertheless, the crossover is expected to

be smooth, if on the BEC side one includes the bound state in the thermodynamics.
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(attractive)(repulsive)

-/+  corresponds to repulsive/attractive 

bound state no bound state

(for small g ,   G  = -g )  



• Formally define it as  S=-1,  i.e. coupling goes to 
infinity.  

• not an RG fixed point in usual sense, but still 
scale invariant.    Occurs at very low energies 
(infinitely attractive)  or very high energy.  
(infinitely repulsive).

Unitary limit in 2d

The kernel becomes a constant and the integral 
equation is transcendentally  algebraic!

where −, + corresponds to g being just below, above g∗, where the scattering length

a = +∞ (BEC side) and a = −∞ (BCS side) respectively. It should be kept in mind

that the underlying interactions are attractive in both cases since the fixed point

occurs at negative g.

In two spatial dimensions the single boson kernel obtained in [18] is

G(|k|) = −
4i

m
log




1 + mg

4π

(
log

(
2Λ
|k|

)
− iπ/2

)

1 + mg
4π

(
log

(
2Λ
|k|

)
+ iπ/2

)





= −
8

m
arctan



 mg/8

1 + mg
4π log

(
2Λ
|k|

)





= −
8

m
arctan

(
2π

log(2Λ∗/|k|)

)

(48)

where Λ∗ is defined in eq. (13), and |k| = |k1 − k2| is the relative momentum. In

the unitary limit g → ±∞, the theory is at the scale Λ∗ and one should consider

|k1 − k2| ≈ 2Λ∗. The result is that G becomes a constant in this unitary limit:

G(|k|) = ∓
4π

m
(d = 2) (49)

In the attractive case, |k − k′| approaches 2Λ∗ from above as g → −∞, and thus

corresponds to the + sign above. The − sign then corresponds to the repulsive case

where 2Λ∗ is approached from below.

For two-component fermions, the phase space factors I in [18] are doubled, and

since G ∝ 1/I, the kernels have an extra 1/2 in the fermionic case:

Gfermi =
1

2
Gbose (50)

The above unitary limit of the kernels leads to a scale-invariant integral equation

for the pseudo-energy, which in turn leads to the scaling forms of the previous section.

This will be described in detail for the d = 2 case in subsequent sections. Note
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Results

at the critical point where η/s > 1.26 times the bound.

II. SCALING FUNCTIONS IN THE UNITARY LIMIT.

The scale invariance in the unitary limit implies some universal scaling forms[6].

In this section we define various scaling functions with a meaningful normalization

relative to free particles.

First consider a single species of bosonic or fermionic particle with mass m at

chemical potential µ and temperature T . The free energy density has the form

F = −ζ(5/2)

(
mT

2π

)3/2

T c(µ/T ) (3)

where the scaling function c is only a function of x ≡ µ/T . (ζ is Riemann’s zeta

function.) The combination
√
mT/2π = 1/λT , where λT is the thermal wavelength.

For a single free boson or fermion:

lim
µ/T→0

cboson = 1, cfermion = 1−
1

2
√
2

(free particles). (4)

It is also convenient to define the scaling function q, which is a measure of the

quantum degeneracy, in terms of the density as follows:

nλ3
T = q (5)

The two scaling functions c and q are of course related since n = −∂F/∂µ, which

leads to

q = ζ(5/2)c′ (6)

where c′ is the derivative of c with respect to x. Henceforth g′ will always denote the

derivative of g with respect to x. The expressions for c and q for free theories will

be implicit in the next section.
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I. INTRODUCTION

In the so-called unitary limit of a quantum Bose or Fermi gas, the scattering

length a diverges. This occurs at a fixed point of the renormalization group, thus

these systems provide interesting examples of interacting, scale-invariant theories

with dynamical exponent z = 2, i.e. non-relativistic. They can be realized experi-

mentally by tuning the scattering length to ±∞ using a Feshbach resonance. (See for

instance [1, 2] and references therein.) They are also thought to occur at the surface

of neutron stars. These systems have also attracted much theoretical interest[3–17].

There have even been some proposals to use the AdS/CFT correspondence to learn

about these models[18–21].

Because of the scale-invariance, the only length scales in the problem are based

on the density n1/d where d is the spatial dimension, and the thermal wavelength

λT =
√
2π/mT . Equivalently, the only energy scales are the chemical potential µ

and the temperature T . The problem is challenging since there is no small paramater

to expand in such as na3. Any possible critical point must occur at a specific value

of x = µ/T . This can be translated into universal values for ncλ3
T , or for fermions

universal values for Tc/TF where εF = kBTF is the Fermi energy. For instance the

critical point of an ideal Bose gas is the simplest example, where ncλ3
T = ζ(3/2) =

2.61.

The present work is the sequel to [22], where we used the S-matrix based formu-

lation of the quantum statistical mechanics developed in[23, 24]. This approach is

very well-suited to the problem because in the unitary limit the S-matrix S = −1,

and kernels in the integral equations simplify. In fact, this approach can be used to

develop an expansion in 1/a. The main formulas for the 2 and 3 dimensional cases of

both bosons and fermions were presented, however only the 2-dimensional case was

analyzed in detail in [22]. Here we analyze the 3-dimensional case.

2

(bosons)

(fermions)

c=1  for 
free boson

at zero chem.pot. 
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t′ ≈ −0.3, g ≈ 13

Tc/t ≈ 0.02

Tc/t ≈ 0.025 experiments

nλd
Tc

= constant

Tc/TF = constant
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8π

m|k− k′| log
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1/gR + im|k− k′|/16π

)

g → g∗
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g

1− g/g∗
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Fermions
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FIG. 7: Entopy per particle as a function of T/TF .
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FIG. 8: Chemical potential normalized to εF as a function of T/TF .

T is lowered, however in contrast to the ideal gas case, it then begins to decrease as

T approaches Tc.

16

critical point

!2 !1 1 2

1

2

3

4

c for fermions

x = µ/T

c

free

FIG. 1: c(x) and its equivalent for a free theory as a function of x = µ/T .

the specific heat per particle becomes negative, as shown in Figure 5. When x ! 0,

CV /N approaches the classical value 3/2. This leads us to suggest a phase transition,

at x = xc, corresponding to the critical temperature Tc/TF ≈ 0.1. As we will show,

our analysis of the viscosity to entropy-density ratio suggests a higher Tc/TF . There

have been numerous estimates of Tc/TF based on various approximation schemes,

mainly using Monte Carlo methods on the lattice [10–15], quoting results for Tc/TF

between 0.05 and 0.23. The work [11] puts an upper bound Tc/TF < 0.14, and the

most recent results of Burovski et. al. quote Tc/TF = 0.152(7). Our result is thus

consistent with previous work. The equation of state at this point follows from eq.

(17):

p = 4.95nT (32)

The energy per particle, normalized to the Fermi energy εF , i.e. E/NεF = 3ξ/5,

and the entropy per particle, are shown in Figures 6,7 as a function of T/TF , where

kBTF = εF . At high temperatures it matches that of a free Fermi gas, in agreement

11

consistent with lattice Monte Carlo



Bosons

Evidence for an interacting version of  BEC (new)
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FIG. 3: The occupation numbers as a function of κ for x = 5, 10, 15.

−1.2741, there is no solution that is smoothly connected to the classical limit x →

−∞. Numerically, when there is no solution the iterative procedure fails to converge.

The free energy scaling function is plotted in Figure 9. Note that c < 1, where c = 1

is the free field value. We thus take the physical region to be x < xc. We find strong

evidence that the gas undergoes BEC at x = xc. In Figure 10, we plot ε(k = 0) as a

function of x, and ones sees that it goes to zero at xc. This implies the occupation

number f diverges at k = 0 at this critical point. One clearly sees this behavior in

Figure 11.

The compressibility is shown in Figure 12, and diverges at xc, again consistent

with BEC. We thus conclude that there is a critical point at xc which a strongly

interacting, scale invariant version of the ideal BEC. In terms of the density, the

critical point is:

ncλ
3
T = 1.325, (µ/T = xc = −1.2741) (33)
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compare with non-interacting BEC:
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FIG. 4: Entropy per fermionic particle as a function of x.

The negative value of the chemical potential is consistent with the effectively attrac-

tive interactions. The above should be compared with the ideal BEC of the free

theory, where xc = 0 and ncλ3
T = ζ(3/2) = 2.61, which is higher by a factor of 2. At

the critical point the equation of state is

p = 0.318nT (34)

compared to p = 0.514nT for the free case. (0.514 = ζ(5/2)/ζ(3/2)).

A critical exponent ν characterizing the diverging compressibility can be defined

as

κ ∼ (T − Tc)
−ν (35)

A log-log plot of the compressibility verses T − Tc shows an approximately straight

line, and we obtain ν ≈ 0.69. This should be compared with BEC in an ideal gas,

where ν ≈ 1.0. Clearly the unitary gas version of BEC is in a different universality

class.

14
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FIG. 11: The occupation number f(κ) for x = −1.275 and xc = −1.2741.

T/TF = 0.28, and
η

s
> 4.72

!

4πkB
(41)

The experimental data has a minimum that is about 6 times this bound. In the free

fermion theory the minimum occurs at µ/T ≈ 2.3, which gives η/s > 7.2!/4πkB.

For bosons, the ration η/s is plotted in Figure 16 as a function of T/Tc. One sees

that it has a minimum at the critical point, where

η

s
> 1.26

!

4πkB
(42)

Thus the bosonic gas at the unitary critical point is a more perfect fluid than that

of fermions. On the other hand, the ideal Bose gas at the critical point has a lower

value:
η

s

∣∣∣∣∣
ideal

=

√
3πζ(5/2)

20ζ(3/2)3/2
= 0.53

!

4πkB
(43)
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FIG. 12: The compressibility κ as a function of µ/T .
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FIG. 13: The entropy per particle as a function of T/Tc.
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Viscosity to entropy density ratio
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FIG. 14: The specific heat per particle as a function of T/Tc.
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FIG. 15: The viscosity to entropy-density ratio as a function of T/TF for fermions. The

horizontal line is 1/4π.

VII. CONCLUSIONS

We presented a novel analytic treatment of unitary Bose and Fermi gases at finite

temperature and chemical potential using a new formulation of statistical mechanics
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FIG. 11: The occupation number f(κ) for x = −1.275 and xc = −1.2741.

T/TF = 0.28, and
η

s
> 4.72

!

4πkB
(41)

The experimental data has a minimum that is about 6 times this bound. In the free

fermion theory the minimum occurs at µ/T ≈ 2.3, which gives η/s > 7.2!/4πkB.

For bosons, the ration η/s is plotted in Figure 16 as a function of T/Tc. One sees

that it has a minimum at the critical point, where

η

s
> 1.26

!

4πkB
(42)

Thus the bosonic gas at the unitary critical point is a more perfect fluid than that

of fermions. On the other hand, the ideal Bose gas at the critical point has a lower

value:
η

s

∣∣∣∣∣
ideal

=

√
3πζ(5/2)

20ζ(3/2)3/2
= 0.53

!

4πkB
(43)
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In good agreement  with experiments
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FIG. 16: The viscosity to entropy-density ratio as a function of T/Tc for bosons. The

horizontal line is 1/4π.

based on the exact, zero temperature, 2-body scattering. Our results appear to be

consistent with lattice Monte Carlo methods. All of the thermodynamic functions,

such as entropy per particle, energy per particle, specific heat, compressibility, and

viscosity are readily calculated once one numerically solves the integral equation for

the pseudo-energy.

For fermions, our 2-body approximation is good if the temperatures are not too

low. We estimated Tc/TF ≈ 0.1, where the critical point occurs at µ/T ≈ 11.2. For

bosons we presented evidence for a strongly interacting version of BEC at the critical

point nλ3
T ≈ 1.3, corresponding to µ/T = −1.27.
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a more perfect fluid than fermions
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Hubbard Model Gas

gas and to Bose and Fermi gases in the conformal unitary limit with some amount

of success[? ? ].

Our conventions for the Hubbard model are described in the next section. We

include a next nearest neighbor hopping term of strength t′, since it is known to

be non-zero in the cuprates; as we will show, its effects are important. The kinetic

hopping terms are treated exactly, however the Coulomb repulsion is approximated

as a local continuum integral, such that the model can be treated as a quantum

gas. We refer to the resulting model as the Hubbard model gas. In section III, the

effective momentum dependent coupling, which is the kernel G(k1,k2) in the integral

equation satisfied by the pseudo-energy, is analyzed. We show that there exists a

narrow band of attractive interactions near the half-filled Fermi surface for U/t large

enough, and t′ plays an important role in determining this property. For t′ = −0.3,

appropriate to some cuprates, attractive interactions exists for U/t > 12.8. In section

IV the S-matrix based formalism we utilize for calculating thermodynamic properties

is reviewed and specialized to the Hubbard model. In section V the free energy

is analyzed, and we present evidence for superconducting and anti-ferromagnetic

phases, and the pseudogap in this formalism.

II. THE HUBBARD MODEL GAS

The Hubbard model describes fermionic particles with spin, hopping between the

sites of a square lattice, subject to strong local coulombic repulsion. The lattice

hamiltonian is

H = −t
∑

<i,j>,α=↑,↓

(
c†ri,αcrj ,α

)
− t′

∑

<i,j>′,α=↑,↓

(
c†ri,αcrj ,α

)
+ U

∑

r

nr↑nr↓ (1)

where ri,j, r are sites of the lattice, < i, j > denotes nearest neighbors, n = c†c are

densities, and c†, c satisfy canonical anti-commutation relations. For both cuprates

3

treat as local diagonalize free part

LSCO and BSCO, U/t ≈ 13. We have also included a next to nearest neighbor

hopping term t′, since it is not difficult to incorporate into the formalism, and it is

known to be non-zero for high Tc materials. As we will see, it can play a significant

role. For LSCO and BSCO, t′/t approximately equals −0.1 and −0.3 respectively;

in our analysis below we set t′/t = −0.3.

We introduce the two fields ψ↑,↓ and the action

S =

∫
d2r dt

(
∑

α

i ψ†
α∂tψα −H

)

(2)

where H is the hamiltonian density. The field has the following expansion charac-

teristic of a non-relativistic theory

ψα(r) =

∫
d2k

(2π)2
ck,α eik·r (3)

and satisfies

{ψα(r), ψα′(r′)} = δ(r − r′)δα,α′ (4)

The free part of the hamiltonian is then

Hfree =

∫
d2k ωk

∑

α

c†k,αck,α (5)

where

ωk = −2t (cos(kxa) + cos(kya)) − 4t′ cos(kxa) cos(kya) (6)

where a is the lattice spacing and t taken to be positive. In the sequel it is implicit

that k is restricted to the first Brillouin zone, −π/a ≤ kx,y ≤ π/a

The interaction part of the hamiltonian is local, and we approximate it as a

continuum integral:

Hint = u

∫
d2r ψ†

↑ψ↑ψ
†
↓ψ↓ (7)

where u = Ua2. With this approximation, the model can be treated as a quantum

fermionic gas, where the only effect of the lattice is in the free particle energies ωk.
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FIG. 2: The kernel G for Cooper pairs as a function of total energy E for g = U/t =

5, 13.5, 14, 15, 20, and t′/t = −0.3 (Color figures on-line.)

non-zero t′. For fixed g, if |t′| is too small, there is no attractive region, as is apparent

in Figure ??. If superconductivity indeed arises from these attractive interactions,

then this suggests that superconductivity may not exist if t′ = 0. There is actually

some experimental evidence for this, in that Tc as a function of t′/t appears to

extrapolate to zero[? ] .

It is also intructive to plot G for pairs of opposite momentum as a function of

kx, ky in the first Brillouin zone. This is shown in Figure ??. Again this implies that

the interactions are attractive in a narrow region below half-filling . The positive

regions at the corners of the Brillouin zone are due to a divergence in the loop integral

which should be regularized; however since we will be studying hole doping of the

half-filled state, the densities will be low enough to be far from these regions, so

this regularization will be unnecessary. Finally, note that for low enough E, the

interactions are always repulsive, which should imply that at high enough doping

the theory should be well-approximated by a Fermi liquid.

11

* can treat as a gas with coupling  
Cuprates:    

I. INTRODUCTION

t′ ≈ −0.3, g ≈ 13

Tc/t ≈ 0.02

Tc/t ≈ 0.025 experiments

nλTc = constant

Tc/TF = constant

G(k,k′) = −i
8π

m|k− k′| log

(
1/gR − im|k− k′|/16π

1/gR + im|k− k′|/16π

)

g → g∗

gR =
g

1− g/g∗

a = mgR/2π

a→ ±∞

a = +∞

a = −∞

G→ ∓ 8π2

m|k− k′|

S → −1

2
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regions at the corners of the Brillouin zone are due to a divergence in the loop integral

which should be regularized; however since we will be studying hole doping of the

half-filled state, the densities will be low enough to be far from these regions, so

this regularization will be unnecessary. Finally, note that for low enough E, the

interactions are always repulsive, which should imply that at high enough doping

the theory should be well-approximated by a Fermi liquid.
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Conclusion:   for t’=-0.3,   g must be greater than 
12.8 for an attractive band to exist.   
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and t′ = 0,−0.1,−0.3,−0.4.

Let us make the hypothesis that the regions of attractive interactions described

above lead to Cooper pairing and superconductivity. Then the following scenario

emerges. The Fermi surface with interactions is calculated in section V based on the

filling fractions f . In Figure ?? we plot these Fermi surfaces for various hole doping,

and also display the attractive band. (See the next section for the precise definition of

hole doping h; as defined it corresponds to the number of holes per plaquette.) This

figure shows that the attractive regions in the anti-nodal directions, i.e. (kx, ky) =

(0, π) and 90◦ rotations thereof, play the most significant role. At low densities (high

hole-doping), there are no attractive interactions within the Fermi surface, and the

model should describe a Fermi-liquid. On the other hand, as h is decreased, the Fermi

surface intersects attractive regions in the anti-nodal directions. h values. If a gap

forms in these directions, then this could explain the d-wave nature of the gap, which

is zero in the nodal (π, π) directions. As the density is increased further, eventually

the Fermi surface is beyond the attractive band. i.e. the attractive band is completely

12

g=15,    t’=0, -0.1, -0.3, -0.4

Conclusion:         no superconductivity if  t’ =0
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FIG. 7: Existence of solutions. In the dark regions there are no solutions to the integral

equation for the pseudo-energy. The horizontal axis is the chemical potential µ/t, and the

vertical axis is the temperature T/t.

critical temperatures. The comparison with data for the high Tc compounds BSCO

and YBCO is reasonably good. Here t ≈ 3000K, and our analysis gives a maximum

Tc ≈ 300K, which is about 3 times too high. This discrepancy can perhaps be

accounted for by a quantum renormalization of the hopping coupling from its bare

value, which we have not taken into account. The low values for TN we found are

perhaps a consequence of the Mermin-Wagner theorem, in that the physical value

for TN should depend on the interplanar coupling, which we have not taken into

account.
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