QUANTUM GASES IN THE UNITARY LIMIT AND

ANDRE LECLAIR
CORNELL UNIVERSITY

> Benasque
> July $2 \quad 2010$

Outline

- The unitary limit of quantum gases
- S-matrix based approach to thermodynamics
- Application to the unitary limit
- Hubbard model.
(unitary gases work done with Pye-ton How, 2010, JSTAT)

Motivations:

- Intriguing examples of scale invariant theories with $\mathrm{z}=2$ dynamical exponent (Schrodinger symmetry).
- experimental realizations: cold atoms tuned through a Feshbach resonance.
- surface of neutron stars.
- non-relativistic AdS/CFT description? Is there a bound on shear viscosity to entropy density?

$$
\eta / s \geq \frac{\hbar}{4 \pi k_{B}}
$$

Unitary limit of quantum gases

Model actions for bosons and fermions:

$$
\begin{aligned}
& S=\int d^{d} \mathbf{x} d t\left(i \phi^{\dagger} \partial_{t} \phi-\frac{|\vec{\nabla} \phi|^{2}}{2 m}-\frac{g}{4}\left(\phi^{\dagger} \phi\right)^{2}\right) \\
& S=\int d^{d} \mathbf{x} d t\left(\sum_{\alpha=\uparrow, \downarrow} i \psi_{\alpha}^{\dagger} \partial_{t} \psi_{\alpha}-\frac{\left|\vec{\nabla} \psi_{\alpha}\right|^{2}}{2 m}-\frac{g}{2} \psi_{\uparrow}^{\dagger} \psi_{\uparrow} \psi_{\downarrow}^{\dagger} \psi_{\downarrow}\right)
\end{aligned}
$$

Renormalization group:

flows to low energy:

$$
\mathrm{d}=3 \text { case: }
$$

- at the fixed point, a=scattering length diverges.
- $\mathrm{z}=2$ scale invariant theory. Only energy scales are the chemical potential and temperature.
- On BEC side, the 2 -fermion bound state can condense.
- BCS side well described by BCS theory at small coupling. (no bound state on this side.)
- in unitary limit: Very strongly coupled. No small parameter like $n a^{3}$
- new methods are needed.
motivate the method with the:

$\mathrm{d}=\mathrm{I}$ case

S-matrix:

$$
S=\frac{k-k^{\prime}-i g / 4}{k-k^{\prime}+i g / 4}
$$

Unitary limit:

$$
\begin{aligned}
& g \rightarrow \infty \\
& S \rightarrow-1
\end{aligned}
$$

Turns out to be a free fermion. Difficult to see perturbatively, but clear from the TBA.

Thermodynamic Bethe Ansatz in id

free energy: $\quad \mathcal{F}=-\frac{1}{\beta} \int d k \log \left(1+e^{-\beta \varepsilon(k)}\right)$

$$
\varepsilon(k)=\omega_{k}-\frac{1}{\beta} \int d k^{\prime} K\left(k, k^{\prime}\right) \log \left(1+e^{-\beta \varepsilon\left(k^{\prime}\right)}\right)
$$

$$
\beta=1 / T
$$

$$
K=-i \partial_{k} \log S
$$

$$
\omega_{k}=k^{2} / 2 m \quad=\text { single particle energy }
$$

In the unitary limit, just a free fermion.

The formalism: a TBA-like approach in any dimension

density: $\quad n=-\partial_{\mu} \mathcal{F}=\int \frac{d^{d} \mathbf{k}}{(2 \pi)^{d}} f(\mathbf{k})$
Making a Legendre transformation in the chemical potential and occupation number f, one can show there exists a functional F where the free energy is given by:
variational principle:

$$
\frac{\delta \digamma}{\delta f}=0
$$

Starting point:

$$
Z=Z_{0}+\frac{1}{2 \pi} \int d E \mathrm{e}^{-\beta E} \operatorname{Tr} \operatorname{Im} \partial_{\mathrm{E}} \log \widehat{\mathrm{~S}}(\mathrm{E})
$$

(Dashen, Ma, Bernstein, 1969)

Can derive:

$$
\digamma=\digamma_{0}+\digamma_{1}
$$

$$
\digamma_{0}=\int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}}\left(\left(\omega_{\mathbf{k}}^{\text {energy }}-\mu\right) f-\frac{1}{\beta}[(f-1) \log (1-f)-f \log f]\right)
$$

$$
\mathrm{F}=\mathrm{E}-\mathrm{TS}
$$

(see Landau-Lifshitz)
$\digamma_{1}=-\frac{1}{2} \int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} \int \frac{d^{2} \mathbf{k}^{\prime}}{(2 \pi)^{2}} f\left(\mathbf{k}^{\prime}\right) G\left(\mathbf{k}, \mathbf{k}^{\prime}\right) f(\mathbf{k})$
(keep only 2 -body terms)
$2 \pi \delta\left(E-\omega_{\mathbf{k}}-\omega_{\mathbf{k}^{\prime}}\right) V G\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=-i<\mathbf{k}, \mathbf{k}^{\prime}|\log \widehat{S}(E)| \mathbf{k}, \mathbf{k}^{\prime}>$

Final result. Variational principle gives:

$$
\begin{gathered}
f(\mathbf{k})=\frac{1}{e^{\beta \varepsilon(\mathbf{k})}+1} \\
\varepsilon(\mathbf{k})=\omega_{\mathbf{k}}-\mu-\int \frac{d^{d} \mathbf{k}}{(2 \pi)^{d}} G\left(\mathbf{k}, \mathbf{k}^{\prime}\right) \frac{1}{e^{\beta \varepsilon\left(\mathbf{k}^{\prime}\right)}+1} \\
\mathcal{F}=-T \int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}}\left[\log \left(1+e^{-\beta \varepsilon}\right)+\frac{\beta}{2} \frac{1}{e^{\beta \varepsilon}+1}(\varepsilon-\omega+\mu)\right]
\end{gathered}
$$

Structure of the kernel G

$$
G=-\frac{i}{2 \mathcal{I}} \log \left(\frac{1 / g_{R}-i \mathcal{I} / 2}{1 / g_{R}+i \mathcal{I} / 2}\right)
$$

$$
L=i \int \frac{d^{d} \mathbf{p}}{(2 \pi)^{d}} \frac{1}{E-\omega_{\mathbf{p}}-\omega_{\mathbf{K}-\mathbf{p}}+2 i \epsilon}=\mathcal{I}+i \gamma \quad \text { (r-loop integral) }
$$

renormalized coupling:

$$
g_{R}=\frac{g}{1-g \gamma / 2}
$$

E and \mathbf{K} are the total energy and momentum of the 2 particles
!! Non -perturbative, well-defined expansion in I / g !!

Application to 3d unitary gas

$$
G\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=-i \frac{8 \pi}{m\left|\mathbf{k}-\mathbf{k}^{\prime}\right|} \log \left(\frac{1 / g_{R}-i m\left|\mathbf{k}-\mathbf{k}^{\prime}\right| / 16 \pi}{1 / g_{R}+i m\left|\mathbf{k}-\mathbf{k}^{\prime}\right| / 16 \pi}\right)
$$

$$
g_{R}=\frac{g}{1-g / g_{*}}
$$

In the unitary limit, $\quad g \rightarrow g_{*}$
scattering length: $\quad a=m g_{R} / 2 \pi$

$$
a \rightarrow \pm \infty
$$

S-matrix:

$$
S \rightarrow-1
$$

-/+ corresponds to repulsive/attractive (for small $\mathrm{g}, \quad \mathrm{G}=-\mathrm{g}$)

Unitary limit in 2 d

- Formally define it as $S=-1$, i.e. coupling goes to infinity.
- not an RG fixed point in usual sense, but still scale invariant. Occurs at very low energies (infinitely attractive) or very high energy. (infinitely repulsive).

The kernel becomes a constant and the integral equation is transcendentally algebraic!

$$
G(|\mathbf{k}|)=\mp \frac{4 \pi}{m}
$$

4 cases: attractive/repulsive bosons/fermions

Results

Scale invariance implies the scaling form:

$$
\mathcal{F}=-\zeta(5 / 2)\left(\frac{m T}{2 \pi}\right)^{3 / 2} T c(\mu / T)
$$

$\mathrm{c}=\mathrm{I}$ for
free boson
at zero chem.pot.

Critical points must occur at fixed values of μ / T These points can be expressed as:

$$
n \lambda_{T_{c}}^{d}=\text { constant } \quad \text { (bosons) } \quad \lambda_{T}=\sqrt{2 \pi / m T} .
$$

$$
T_{c} / T_{F}=\text { constant }
$$

(fermions)

Fermions

Entropy per particle for fermions

$$
T_{c} / T_{F} \approx 0.1
$$

consistent with lattice Monte Carlo

Bosons

Evidence for an interacting version of BEC (new)

$$
n_{c} \lambda_{T}^{3}=1.325, \quad\left(\mu / T=x_{c}=-1.2741\right)
$$

compare with non-interacting BEC:

$$
x_{c}=0 \text { and } n_{c} \lambda_{T}^{3}=\zeta(3 / 2)=2.61,
$$

Occupation number for bosons

Viscosity to entropy density ratio

Viscosity to entropy ratio for bosons

$$
\frac{\eta}{s}>1.26 \frac{\hbar}{4 \pi k_{B}}
$$

a more perfect fluid than fermions

High Temperature Superconductivity

Schematic phase diagram of hole-doped cuprates

Not here (doping a Mott insulator)

Hubbard Model Gas

$$
\begin{array}{r}
H=-t \sum_{<i, j>, \alpha=\uparrow, \downarrow}\left(c_{\mathbf{r}_{i}, \alpha}^{\dagger} c_{\mathbf{r}_{j}, \alpha}\right)-t^{\prime} \sum_{<i, j>^{\prime}, \alpha=\uparrow, \downarrow}\left(c_{\mathbf{r}_{i}, \alpha}^{\dagger} c_{\mathbf{r}_{j}, \alpha}\right)+U \sum_{\mathbf{r}} n_{\mathbf{r} \uparrow} n_{\mathbf{r} \downarrow} \\
\text { diagonalize free part }
\end{array} \text { treat as local }
$$

*free, single particle energies:

$$
\omega_{\mathbf{k}}=-2 t\left(\cos \left(k_{x} a\right)+\cos \left(k_{y} a\right)\right)-4 t^{\prime} \cos \left(k_{x} a\right) \cos \left(k_{y} a\right)
$$

* can treat as a gas with coupling

$$
g=U / t
$$

Cuprates:

$$
t^{\prime} \approx-0.3, \quad g \approx 13
$$

Conclusion: for $\mathrm{t}^{\prime}=-0.3, \mathrm{~g}$ must be greater than I2.8 for an attractive band to exist.

$$
g=15, \quad t^{\prime}=0,-0.1,-0.3,-0.4
$$

Conclusion: no superconductivity if $\mathrm{t}^{\prime}=0$

Fermi surfaces for hole doping $\mathrm{h}=\mathrm{O}, . \mathrm{I}, .2, .3, .4$

Attractive band in pink
?? Can we see the phase transitions ??

Dark regions: no solution to pseudogap equation

$$
T_{c} / t \approx 0.02
$$

the End

