Gert-Ludwig Ingold

Differences can be negative

in collaboration with:

Peter Hänggi Peter Talkner

Universität Augsburg

Acta Phys. Pol. B **37**, 1537 (2006) New J. Phys. **10**, 115008 (2008) Phys. Rev. E **79**, 061105 (2009)

Astrid Lambrecht Serge Reynaud

Laboratoire Kastler Brossel, Paris

CASIMIR

Phys. Rev. E 80, 041113 (2009)

Motivation I

Differences can be negative

Motivation

Specific heat and dissipation Two approaches

Path I

Path II Specific heat Negative values

Casimir effect

Conclusions

For the »mutual information« aficionados

There will be differences of

... specific heats $C_{AB} - C_B$

... and therefore of entropies $S_{AB} - S_B$

Motivation II

Differences can be negative

For the »system+environment« aficionados

Motivation

specific heat of a free particle

Specific heat and dissipation Two approaches Path I Path II Specific heat Negative values Casimir effect Conclusions

Motivation II

Differences can be negative

For the »system+environment« aficionados

Motivation

specific heat of a free particle

Does the free particle violate the third law of thermodynamics?

P. Hänggi, GLI, Acta Phys. Pol. B 37, 1537 (2006)

Differences can be negative

We need an energy scale

Motivation

Specific heat and dissipation

Path I

Path II

Specific heat

Negative values

Casimir effect

Conclusions

Differences can be negative

We need an energy scale

Motivation

Specific heat and dissipation Two approaches

Path I

Path II

Specific heat Negative values

Casimir effect

Conclusions

1 put particle into a box

let the particle be free (only limited by the size of the observable universe)

 \rightarrow energy scale of $6 \cdot 10^{-70}$ K

Differences can be negative

We need an energy scale

Motivation

Specific heat and dissipation Two approaches

Path I

Path II

. Negative values

Casimir effect

Conclusions

put particle into a box

² couple the particle to an environment

new energy scale $\hbar \gamma \longrightarrow$ relevant quantity $\frac{k_{\rm B}T}{\hbar \gamma}$

Differences can be negative

Motivation

Specific heat and dissipation Two approaches

Path I

Path II Specific heat

Casimir effect

Conclusions

We need an energy scale

① put particle into a box

⁽²⁾ couple the particle to an environment χ new energy scale $\hbar \gamma \longrightarrow$ relevant quantity $\frac{k_{\rm B}T}{\hbar \gamma}$

 $\gamma \rightarrow 0$ corresponds to classical limit $T \rightarrow \infty$

Coupling to the environment makes the free particle more quantum! [somewhat in the spirit of J. R. Anglin, J. P. Paz, and W. H. Zurek, Deconstructing decoherence, PRA '97]

The problem

Differences can be negative	
Motivation	
Specific heat and dissipation Two approaches	$H_{\rm S}$
Path I	
Path II Specific heat Negative values	
Casimir effect	Т
Conclusions	

The problem

What actually do we mean by »specific heat of a dissipative system«?

Statistical physics 101

From system energy to specific heat

From partition function to specific heat

An important difference

 \Rightarrow

Path I

Path II

Differences can be negative

Motivation

Specific heat and dissipation Two approaches

Path I

Path II

Specific heat Negative values

Casimir effect

Conclusions

$$E = \langle H_{\rm S} \rangle = \frac{{\rm Tr}_{{\rm S}+{\rm B}}(H_{\rm S}{\rm e}^{-\beta H})}{{\rm Tr}_{{\rm S}+{\rm B}}({\rm e}^{-\beta H})}$$

$$\mathcal{Z} = \frac{\mathrm{Tr}_{\mathrm{S+B}}(\mathrm{e}^{-\beta H})}{\mathrm{Tr}_{\mathrm{B}}(\mathrm{e}^{-\beta H_{\mathrm{B}}})} \qquad U = -\frac{\partial \ln \mathcal{Z}}{\partial \beta}$$

$$U = \langle H \rangle - \langle H_{\rm B} \rangle_{\rm B}$$
$$= E + \left[\langle H_{\rm SB} \rangle + \langle H_{\rm B} \rangle - \langle H_{\rm B} \rangle_{\rm B} \right]$$

For finite coupling to the bath, *E* and *U* differ! \Rightarrow There is no unique way to define a specific heat.

P. Hänggi, GLI, Acta Phys. Pol. B 37, 1537 (2006)

Specific heat of a damped free particle

- T $\rightarrow \infty$: classical value $k_{\rm B}/2$ Damping constant γ determines temperature scale
- Third Law saved by coupling to the environment
- more damping makes the system more quantum

Specific heat of a damped free particle

 $\omega_{\rm D}/\gamma = \infty$

0.8

0.6

 $k_{\rm B}T/\hbar\gamma$

5

0.2

Differences can be negative

Partition function

 already the leading high temperature corrections for C^E and C^Z differ

Specific heat of a damped free particle

Differences can be negative

Partition function

Path II

Specific heat Negative values

Casimir effect

Conclusions

- already the leading high temperature corrections for C^E and C^Z differ
- The specific heat can become negative !?

P. Hänggi, GLI, P. Talkner, New J. Phys. 10, 115008 (2008)

Differences make their appearance

reduced partition function

Differences can be negative

Motivation

Specific heat and dissipation Two approaches

Path I

Path II Specific heat Negative values

Casimir effect

Conclusions

$\mathcal{Z} = \frac{\mathcal{Z}_{S+B}}{\mathcal{Z}_B}$

In order to obtain the entropy or the specific heat, one needs to take the logarithm.

 \Rightarrow The reduced partition function leads to differences of entropies or of specific heats:

$$C^Z = C^Z_{S+B} - C^Z_B$$

i. e., how does the specific heat change if the system degree of freedom is coupled to the bath? The difference of two positive numbers can be negative.

Origin of negative specific heat

Universität UN Augsburg University

Differences can be negative

Motivation

Two approaches

Negative values

Conclusions

Path I Path II

GLI, P. Hänggi, P. Talkner Phys. Rev. E 79, 061105 (2009)

Origin of negative specific heat

Universität Augsburg

Differences can be negative

Path I Path II

GLI, P. Hänggi, P. Talkner Phys. Rev. E 79, 061105 (2009)

Coupling of a degree of freedom to an environment can lead to a reduction of the specific heat.

Casimir effect

Universität Augsburg University

Differences can be negative

Motivation

Specific heat and dissipation Two approaches

Path I

Path II

Specific heat Negative values

Casimir effect

Conclusions

Casimir effect

Differences can be negative

Motivation

Specific heat and dissipation Two approaches

Path I

Path II

Specific heat Negative values

Casimir effect

casilin crice

Conclusions

Universität Augsburg University

finite temperature finite permittivity geometry surface roughness finite thickness

Casimir effect

Differences can be negative

Motivation

Specific heat and dissipation Two approaches

Path I

Path II

Specific heat Negative values

Casimir effect

Conclusions

finite temperature finite permittivity geometry surface roughness finite thickness

Differences can be negative

Motivation

Specific heat and dissipation

Path I

Path II

Specific heat

Negative values

Casimir effect

Conclusions

ideal mirrors

$$\varepsilon(\omega) = -\infty$$

Differences can be negative

Motivation

Specific heat and dissipation Two approaches

Path I

Path II

Specific heat

Negative values

Casimir effect

Conclusions

ideal mirrors

plasma model

 $\varepsilon(\omega) = -\infty$

$$\varepsilon(\omega) = 1 - \frac{\omega_{\rm P}^2}{\omega^2}$$

Differences can be negative

Motivation

Specific heat and dissipation

Path I

Path II

Specific heat Negative values

Casimir effect

Conclusions

ideal mirrors

 $\varepsilon(\omega) = -\infty$

plasma model

$$\varepsilon(\omega) = 1 - \frac{\omega_{\rm P}^2}{\omega^2}$$

Drude model

$$\varepsilon(\omega) = 1 - \frac{\omega_{\rm P}^2}{\omega(\omega + {\rm i}\gamma)}$$

X

Differences can be negative

Motivation

Specific heat and dissipation

Path I

Path II

Specific heat Negative values

Casimir effect

Conclusions

ideal mirrors

 $\varepsilon(\omega) = -\infty$

plasma model

$$\varepsilon(\omega) = 1 - \frac{\omega_{\rm P}^2}{\omega^2}$$

Drude model

$$\varepsilon(\omega) = 1 - \frac{\omega_{\rm P}^2}{\omega(\omega + i\gamma)}$$

Length scales

Differences can be negative

Motivation

Specific heat and dissipation

Path I

Path II

Specific heat

Negative values

Casimir effect

Conclusions

$$\Delta S_{\rm TE} \sim f\left(\frac{\hbar\gamma}{k_{\rm B}T}\right)$$

Casimir entropy

Differences can be negative

GLI, A. Lambrecht, S. Reynaud, Phys. Rev. E 80, 041113 (2009)

Universität Augsburg University

Differences can be negative

Motivation

Specific heat and dissipation Two approaches

Path I

Path II

Specific heat Negative value

Casimir effect

Conclusions

Dissipation can save the Third Law of thermodynamics.

- For nonnegligible coupling to the bath, specific heat is not uniquely defined.
- The reduced partition function can lead to negative values of the (difference of) specific heat(s).
- This scenario finds an application in the Casimir effect.

References:

P. Hänggi, GLI, Acta Phys. Pol. B 37, 1537 (2006)
P. Hänggi, GLI, P. Talkner, New J. Phys. 10, 115008 (2008)
GLI, P. Hänggi, P. Talkner Phys. Rev. E 79, 061105 (2009)
GLI, A. Lambrecht, S. Reynaud, Phys. Rev. E 80, 041113 (2009)

Differences can be negative

Motivation

Specific heat and dissipation Two approaches

Path I

Path II

Specific heat Negative value

Casimir effect

Conclusions

- Dissipation can save the Third Law of thermodynamics.
- For nonnegligible coupling to the bath, specific heat is not uniquely defined.
- The reduced partition function can lead to negative values of the (difference of) specific heat(s).
- This scenario finds an application in the Casimir effect.

References: P. Hänggi, GLI, Acta Phys. Pol. B **37**, 1537 (2006) P. Hänggi, GLI, P. Talkner, New J. Phys. **10**, 115008 (2008) GLI, P. Hänggi, P. Talkner Phys. Rev. E **79**, 061105 (2009) GLI, A. Lambrecht, S. Reynaud, Phys. Rev. E **80**, 041113 (2009)

Differences can be negative

Motivation

Specific heat and dissipation Two approaches

Path I

Path II

Specific heat Negative value

Casimir effect

Conclusions

- Dissipation can save the Third Law of thermodynamics.
- For nonnegligible coupling to the bath, specific heat is not uniquely defined.
- The reduced partition function can lead to negative values of the (difference of) specific heat(s).

This scenario finds an application in the Casimir effect.

References: P. Hänggi, GLI, Acta Phys. Pol. B **37**, 1537 (2006) P. Hänggi, GLI, P. Talkner, New J. Phys. **10**, 115008 (2008) GLI, P. Hänggi, P. Talkner Phys. Rev. E **79**, 061105 (2009) GLI, A. Lambrecht, S. Reynaud, Phys. Rev. E **80**, 041113 (2009)

Differences can be negative

Motivation

Specific heat and dissipation Two approaches

Path I

Path II

Specific heat Negative values

Casimir effect

Conclusions

- Dissipation can save the Third Law of thermodynamics.
- For nonnegligible coupling to the bath, specific heat is not uniquely defined.
- The reduced partition function can lead to negative values of the (difference of) specific heat(s).
- This scenario finds an application in the Casimir effect.

References: P. Hänggi, GLI, Acta Phys. Pol. B **37**, 1537 (2006) P. Hänggi, GLI, P. Talkner, New J. Phys. **10**, 115008 (2008) GLI, P. Hänggi, P. Talkner Phys. Rev. E **79**, 061105 (2009) GLI, A. Lambrecht, S. Reynaud, Phys. Rev. E **80**, 041113 (2009)

From system energy to specific heat

Differences can be negative

$$\frac{C^E}{k_{\rm B}} = \frac{x_1 x_2}{x_1 - x_2} \left[x_2 \psi'(x_2) - x_1 \psi'(x_1) \right] - \frac{1}{2}$$

 $x_{1,2} = \frac{\hbar\beta\omega_{\rm D}}{4\pi} \left(1 \pm \sqrt{1 - \frac{4\gamma}{\omega_{\rm D}}}\right)$

Motivation

Specific heat and dissipation with

Path I

Path II

Specific heat

Negative values

Casimir effect

Conclusions

High temperature expansion

$$\frac{C^E}{k_{\rm B}} = \frac{1}{2} - \frac{\hbar^2 \gamma \omega_{\rm D}}{24(k_{\rm B}T)^2} + \mathcal{O}(T^{-3})$$

Low temperature expansion

$$\frac{C^E}{k_{\rm B}} = \frac{\pi}{3} \frac{k_{\rm B}T}{\hbar\gamma} - \frac{4\pi^3}{15} \left(\frac{k_{\rm B}T}{\hbar\gamma}\right)^3 \left(1 - 2\frac{\gamma}{\omega_{\rm D}}\right) + \mathcal{O}(T^5)$$

Partition function of the damped free particle

Differences can be negative

Motivation

Specific heat and dissipation

Two approaches

Path I

Path II

Specific heat

Negative values

Casimir effect

Conclusions

 $\mathcal{Z} = \frac{L}{\hbar} \left(\frac{2\pi m}{\beta} \right)^{1/2} \prod_{n=1}^{\infty} \frac{\nu_n}{\nu_n + \hat{\gamma}(\nu_n)}$

back

From partition function to specific heat

Differences can be negative

Motivation

Specific heat and dissipation Two approaches

Path I

Path II

Specific heat Negative values

Casimir effect

Conclusions

$$\frac{C^Z}{k_{\rm B}} = x_1^2 \psi'(x_1) + x_2^2 \psi'(x_2) - \left(\frac{\hbar\beta\omega_{\rm D}}{2\pi}\right)^2 \psi'\left(\frac{\hbar\beta\omega_{\rm D}}{2\pi}\right) - \frac{1}{2}$$

with

$$x_{1,2} = \frac{\hbar\beta\omega_{\rm D}}{4\pi} \left(1 \pm \sqrt{1 - \frac{4\gamma}{\omega_{\rm D}}}\right)$$

High temperature expansion

$$\frac{C^Z}{k_{\rm B}} = \frac{1}{2} - \frac{\hbar^2 \gamma \omega_{\rm D}}{12(k_{\rm B}T)^2} + \mathcal{O}(T^{-3})$$

Low temperature expansion

$$\frac{C^Z}{k_{\rm B}} = \frac{\pi}{3} \frac{k_{\rm B} T}{\hbar \gamma} \left(1 - \frac{\gamma}{\omega_{\rm D}} \right) - \frac{4\pi^3}{15} \left(\frac{k_{\rm B} T}{\hbar \gamma} \right)^3 \left[1 - 3\frac{\gamma}{\omega_{\rm D}} - \left(\frac{\gamma}{\omega_{\rm D}} \right)^3 \right] + \mathcal{O}(T^5)$$

