Quantum Darwinism in an Everyday Environment

C. Jess Riedel

University of California, Santa Barbara Los Alamos National Laboratory

with

Wojciech H. Zurek

Los Alamos National Laboratory

UCSB

Ref: C. J. Riedel, W. H. Zurek, Phys. Rev. Lett. 105, 020404 (2010).

Outline

- Why you should care about quantum Darwinism
 - Decoherence is only part of the story
 - Analogy with special relativity
 - What quantum Darwinism gives you
- Mathematical development (easy)
- Theoretical results
 - Previous work
 - The everyday environment
 - Generalizations

Classical observers

- In a classical universe there are few limits on observers. The universe is...
 - Definitive: All observables have definite values at all times
 - Unique: there is one reality/branch/history
 - Robust: in principle, observers can make measurements which disturb systems arbitrarily little
 - Objective: measurements by different observers agree within error

Quantum observers

- In a quantum universe, all of this goes out the window. The universe is no longer...
 - Definitive: systems need not be in eigenstates of observables.
 Further, there is no consistent way to pretend that they were.
 - Unique: different measurement outcomes become correlated with different states of the observer. Further, a third party need not be correlated with the outcomes.
 - Robust: if system is not diagonal in the basis of measurement, the observer disturbs the system. Further, without knowledge about the state of the system, the observer *almost always* disturbs.
 - Objective: different observers may disagree after taking noncommuting measurements.

Decoherence

- Decoherence is a *partial* solution. In the limit of "good" decoherence, the universe is…
 - Definitive: a certain *preferred* set of observables have approximately definite values at all times
 - Unique: given sufficiently large environments, decoherent outcomes never interact, so outcomes appear unique
 - Robust (...conditionally): measurements do not disturb the system if the observer measures in the preferred basis
 - Objective (...conditionally): two observers will agree on measurement outcomes *if* they both measured in the preferred basis

What we want: Global branching

(no reference to space)

What we want: Global branching

Decoherence guarantees only local branching

"Now"

Elsewhere

Observers are isolated. They can exchange delayed messages, but cannot interact *continuously* with each other.

Key idea: *c* is very fast compared to length and time scales of everyday systems. This allows observers to exchange information back-and-forth more *rapidly than systems typically evolve*.

Quantum Darwinism

- Observers do not typically interact directly with systems
- Rather, systems and observers are bathed in an (untracked) environment
- Through decoherence, many copies of records about the state of the system are imprinted in the environment...often rapidly
- The environment carries these records away where they may be accessed by observers
- Many redundant copies ensure observers can agree (i.e. "objectivity")

Information proliferation

How is this described?

$\mathcal{H} = \mathcal{S} \otimes \mathcal{E}$ = $\mathcal{S} \otimes [\mathcal{E}_1 \otimes \cdots \otimes \mathcal{E}_N]$

$\begin{array}{ccc} |\psi^0_{\mathcal{S}}\rangle\langle\psi^0_{\mathcal{S}}|\otimes [\rho_{\mathcal{E}_1}\otimes\cdots\otimes\rho_{\mathcal{E}_N}] & \to & \rho_{\mathcal{S}\mathcal{E}} \\ & & & \\ & & & \\ & & & & \\ \rho^0_{\mathcal{S}} & & & \rho^0_{\mathcal{E}} \end{array} \end{array}$

How is information quantified?

Von Neumann entropy $H = H[\rho] = -\text{Tr}[\rho \ln \rho]$

Mutual Information

 $I_{SE} = H_S + H_E - H_{SE}$

 $(H_{\mathcal{O}} = H[\rho_{\mathcal{O}}] \text{ for } \mathcal{O} = \mathcal{S}, \mathcal{E}, \mathcal{S}\mathcal{E})$

Fragments

- The mutual information I_{SE} gives the total correlation between the state of the system and the environment
- Observers do not access complete environment
- We want to know about redundant copies
- For this, we need a partitioning of the environment into fragments
- Most environments have natural, spatially local fragments, e.g.
 - The photons in this room
 - Molecules in a gas
 - Oscillating degrees of freedom in a material mechanically coupled to the system

Fragmentation

Fragmentation

Fragment size : $f \in [0, 1]$ (typically, $f \ll 1$)

 $\mathcal{E} = \mathcal{F} \otimes \bar{\mathcal{F}}$ = $[\mathcal{E}_1 \otimes \cdots \otimes \mathcal{E}_{fN}] \otimes [\mathcal{E}_{fN+1} \otimes \cdots \otimes \mathcal{E}_N]$

$I_{\mathcal{SF}} = H_{\mathcal{S}} + H_{\mathcal{F}} - H_{\mathcal{SF}}$

Partial information plots

- Mutual information (I_{SF}) vs. fragment size (f)
- Monotonically increasing with f
- Anti-symmetric for pure initial states

Information deficit and redundancy

- Monotonicity and antisymmetry imply no sensible fragment (f < 0.5) has full classical information
- Agrees with classical case: no records are perfect
- Define a fragment to be a "record" only up to some information deficit, $0 < \delta << 1$
- Define redundancy R_{δ} to be the total number of records in the environment:

$$R_{\delta} \equiv \frac{1}{f_{\delta}},$$
 where f_{δ} is smallest f such that
 $I_{\mathcal{SF}}(f) \ge (1-\delta)H_{\mathcal{S}}$

Information deficit and redundancy

Previous systems explored

- Single spin monitored by an (initially) pure spin environment^[1]
- Single spin monitored by a mixed spin environment^[2,3]
- Harmonic oscillator monitored by a pure environment of oscillators^[4,5]

[1] R. Blume-Kohout and W. H. Zurek, Found. Phys. 35, 1857 (2005).

[2] M. Zwolak, H. T. Quan, and W. H. Zurek, Phys. Rev. Lett. 103, 110402 (2009).

[3] M. Zwolak, H. Quan, and W. H. Zurek, Phys. Rev. A 81, 062110 (2010).

[4] R. Blume-Kohout and W. H. Zurek, Phys. Rev. Lett. 101, 240405 (2008).

[5] J. P. Paz and A. J. Roncaglia, Phys. Rev. A 80, 042111 (2009).

Everyday environment

Seek model which is...

- Found in real world
- Computationally tractable
- Not hampered by symmetries or size restrictions (for computational tractability) which prohibit the large redundancies we expect
- Collisional decoherence: an objected bathed in photons

Collisional decoherence with photons

 $\Delta x, a \ll \lambda$

S-matrix

In other words, scattering mixes photon angles, not energies

$$\langle \hat{k} | T^{(k)} | \hat{k}' \rangle |^2 \propto \left(\frac{a}{\lambda}\right)^6 \left[1 + \cos^2\theta(\hat{k}, \hat{k'})\right]$$

Decoherence

$$|\langle \vec{x_1} | \rho_{\mathcal{S}} | \vec{x_2} \rangle|^2 = \gamma^N |\langle \vec{x_1} | \rho^0_{\mathcal{S}} | \vec{x_2} \rangle|^2$$

decoherence factor
for single photon

Take $N, V \to \infty$ while holding photon density constant. $\gamma \to 0$, but $\Gamma \equiv \gamma^N = e^{-t/\tau_D}$ remains finite. decoherence factor N photons for whole environment volume V

Mixedness of environment

Initial state

System: $|\psi_{\mathcal{S}}^{0}\rangle = |\vec{x}_{1}\rangle + |\vec{x}_{2}\rangle$ — "cat" state
 Environment: $\rho_{\mathcal{E}}^{0} = \bigotimes_{i=1}^{N} \rho_{\mathcal{E}_{i}}^{0}$ — identical, incoherent photons

Point sources (effectively pure)

$$\rho_{\hat{\mathcal{E}}_i}^0 = |\hat{k}\rangle \langle \hat{k}| \qquad \Gamma = e^{-t/\tau_d}$$
$$I_{\mathcal{S}:\mathcal{F}_f} = \ln 2 + \sum_{n=1}^{\infty} \frac{\Gamma^{(1-f)n} - \Gamma^{fn} - \Gamma^n}{2n(2n-1)}$$

Point source mutual information

Point source redundancy

• For large times, Γ is exponentially small, so:

$$I_{\mathcal{S}:\mathcal{F}_f} \approx \ln 2 - \frac{1}{2} \Gamma^f$$

Redundancy growth rate $\approx \tau_D^{-1}$

A speck of dust on the surface of the Earth...

Isotropic sources (angularly mixed)

Same form for monochromatic and thermal spectrum:

$$\rho_{\hat{\mathcal{E}}_i}^0 = \int_{\Omega} \frac{\mathrm{d}\hat{k}}{4\pi} |\hat{k}\rangle \langle \hat{k}| \qquad \Gamma = e^{-t/\tau_d}$$
$$I_{\mathcal{S}:\mathcal{F}_f} = \sum_{n=1}^{\infty} \frac{\Gamma^{(1-f)n} - \Gamma^n}{2n(2n-1)}$$

Decoherence rate: <u>unchanged</u>

Ĵ

Redundacy: <u>none</u>

Isotropic source mutual information

Small disk source: partially mixed

• Valid for disk D with small solid angle A_D :

$$\rho_{\hat{\mathcal{E}}_{i}}^{0} = \int_{D \subset \Omega} \frac{\mathrm{d}\hat{k}}{4\pi} |\hat{k}\rangle \langle \hat{k}| \qquad \Gamma = e^{-t/\tau_{d}}$$

$$\stackrel{\langle \approx 1, \text{ so little difference visible plotting mutual information}}{\underset{\mathcal{I}_{\mathcal{S}:\mathcal{F}_{f}}}{\swarrow}} = \ln 2 + \sum_{n=1}^{\infty} \frac{\Gamma^{(1-f)n} - (\Gamma^{fn})^{\alpha} - \Gamma^{n}}{2n(2n-1)}$$

$$\alpha = 1 - A_D \frac{640\pi^5}{21} \left(\frac{a}{\lambda}\right)^6 \left[1 + O(\frac{\Delta x}{\lambda}) + O(A_D^{1/2} \frac{\lambda}{\Delta x}) + O(A_D \frac{\lambda}{\Delta x} \frac{\lambda^3}{a^3})\right]$$

solid angle of disk

new

Small disk redundancy

For large times, δ is exponentially small and

$$I_{\mathcal{S}:\mathcal{F}_f} \approx \ln 2 - \frac{1}{2} (\Gamma^f)^{\alpha}$$

$$\alpha \approx 1 - A_D \times \text{const}$$

$$R_{\delta}^{\text{disk}} = \frac{\alpha}{\ln[(2\delta \ln 2)^{-1}]} \frac{t}{\tau_D}$$
$$= \alpha R_{\delta}^{\text{point}}$$

Redundancy vs. mixedness

Agrees with spin model

b

Figure 2: (a) Mutual information at $t = \pi/2$ versus ${}^{\sharp}\mathcal{F}$ and h for the same conditions as in Fig. 1. (b) Redundancy versus h for the information deficit $\delta = 0.1$ and at $t = \pi/2$ (the inset shows $t = \pi/3$). The black line (squares) is the exact data. The redundancy can only take on rational values with ${}^{\sharp}\mathcal{E}$ in the numerator because of the discrete nature of the spin environment, which is particularly visible at high redundancy. The blue dashed line is that obtained by the scaling 1 - h, which is a good approximation when h is near one. Thus, even initially mixed \mathcal{E} can store information about \mathcal{S} in many copies. However, it takes larger ${}^{\sharp}\mathcal{F}$ to acquire the same information about \mathcal{S} .

100 50 40 80 20 60 R 0.1 0.6 20 0 0.0 0.2 0.4 0.6 0.8 \propto

Spin model studied by Zwolak et al. first demonstrated reduction of redundancy by initial mixedness.

M. Zwolak, H. T. Quan, W. H. Zurek, Phys. Rev. Lett. 103, 110402 (2009).

M. Zwolak, H. T. Quan, W. H. Zurek, Phys. Rev. A 81, 062110 (2010).

Other extensions

0

Summary

Why you should care about quantum Darwinism

- Decoherence is only part of the story
- Analogy with special relativity
- What quantum Darwinism gives you
- Mathematical development (easy)
- Theoretical Results
 - Previous work
 - The everyday environment \rightarrow huge redundancies
 - Generalizations

