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Schroedinger's cat
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Unitary (deterministic) evolution

Measurement: random outcome

p=1/2 p=1/2 

Isn't the measurement
a quantum process?

Then it should be 
describeable with a
deterministic unitary 
process.

Where does the 
probability come from?!?

Meas. problem

Einstein's cat
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Aim of our work

Minimal (non-probabilistic part) quantum mechanics

(basically linearity of states and transformations and little more)

Locality

(no-signaling and hence causality)

+

Quantum randomness

(no deterministic measurement outcomes are possible))
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Is quantum mechanics local or non-local?!

Einstein non-locality:

“causal” non-locality

acting on a system can change the local properties of a different system 
(super-luminal communication would void the causal structure of spacetime)

acting on a system can change the statistical correlations with a different 
system (obvious), even in such a way that global properties are changed.

Einstein Locality is NOT built into 
QM: the axioms of QM are 
compatible both with locality and 
with non-locality.

We think that QM is               local

We know that QM is                           nonlocal

....BUT

...it depends!

we'll consider



  

Outline

Abstract:  Conventional textbook quantum mechanics introduces randomness of 
measurement outcomes, along with the Born rule, as a postulate of the theory.  
Nonetheless, after various attempts the Born rule was recently derived from the other 
postulates. A common assumption of these derivations is that different ``branches'' of 
the wavefunction represent alternative situations. Without this assumption there is no 
compelling reason for a probabilistic interpretation: alternatives are possible.  Here, by 
using envariance and a modified Bell inequality that employs no Born rule, we show that 
randomness of outcomes is inevitable if one wants the theory to be local, and hence 
causal. In other words, we prove inevitability of randomness using locality to justify 
Everett's identification of random ``events'' with ``branches'', and thus show that one can 
obtain the Born rule replacing the wavefunction-branches assumption with a physically-
motivated locality one.

● Assumptions we use

● The tools we use  

● Intuitive idea of the argument

● Details 

● What does it all mean? 
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The non probabilistic postulates of quantum mechanics

1. States postulate
The state space is a Hilbert space: physical 

properties are represented by vectors |>

2. Schroedinger equation

The time evolution is linear |> = U |>

3. Tensor product structure
The space of a composite system is the tensor 

product of the components:  |>|>
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Our current result

1. States postulate
2. Schroedinger equation

3. Tensor product structure

NPQMNPQM

+
4. “Wavefunction branches” assumption

The states in different branches of the 
wavefunction represent alternatives

either alive or dead

Born rule (the probability law of qm)

4. Locality (no-signaling)
acting on a system cannot change the local properties of a different 
system

prob. of outcomes scalar product

acting on a system cannot change the local properties of a different 
system
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The “extended glow”

Is the “wavefunction branches” assumption avoidable? 

YES!!YES!! Alternatives are possible

Half of the particle goes up, 
half goes down

Bell called this “extended glow” scenario

Half of the cat is alive, half is dead



  

Bell's “extended glow”

“Inspection of the [state vector] itself gives no hint

that the experienced reality is a scintillation... rather 

than, for example, an extended glow of unpredicted 

colour. That is to say, the [state] does not simply 

fail to specify one of the possibilities as actual...  

it fails to list the possibilites.”
[J. Bell, Speakable and Unspeakable 
in quantum mechanics, pg.193]
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Phenomenology

...but we're physicists!!! Just perform an experiment 
and see what happens...

The particle goes either up
or down with p=1/2

We want to prove that quantum randomness is 

a LOGICAL NECESSITY 
(and not obtain it from an experimental datum)

This is not what we want in this work!!!

We only want to employ postulates 1-4 and 
nothing more    (no phenomenological input!)

“scintillation” not “extended glow”
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Phenomenology 2

it is well known that if we add some kind of phenological input, 
we can obtain quantum randomness:

● The Born Rule postulate (like all physical postulates) 

               comes from phenomenology.

● Gleason's theorem: using the “wavefunction branches” 

               assumption (and little more) derives B.R.

● Recent extensions of Bell's inequality: only random outcomes

               can explain quantum correlations (coming from 

               experiments), assuming locality 

Branciard,Brunner,Gisin, 
Kurtsiefer,Linares, Ling, Scarani, 
Nat. Phys. 4, 681 (2008).

Colbeck,Renner, PRL 101,  050403 
(2008) and arXiv:1005.5173.

(relation between observations and projections)

All these results require a 
phenomenological input!
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The tools

Envariance

Bell inequalities
Imply that quantum mechanical correlations 
cannot be described by local hidden variables.

The local actions on a part of an entangled system 
can be counterbalanced by acting only on the rest

(without “branches” assumption)

(modified not to use the Born rule)

[W.H.Zurek, PRL 90,120404]
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Intuition behind our proof

1. We exclude the extended glow using envariance 
(symmetry in entangled states):

we show you can (using only postulates 1-4!), so the “glow” can't be the case!

... but killing the “glow” is not enough... 

just repeat a measurement two times, swapping the system in 
between: can you tell the difference?
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2. We show that observers can track correlations on 
successive measurements, using only the state postulate!

This means there exist some parameter  that allows them to 
compare their measurement results

 plays the same role as the hidden variables in Bell's inequality

3. We use a Bell inequality: 
    a deterministic dependence of the measurement            
    outcomes from  is incompatible with locality

RANDOMNESS!RANDOMNESS!
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Intuition behind our proof

4. The symmetries from envariance constrain the 
randomness to conform to the Born rule

5. ...what about the “collapse of the wavefunction”? (the post-
measurement state)

4. The symmetries from envariance constrain the 
randomness to conform to the Born rule

use Ozawa's result.

Born rule �  collapse

[Ozawa, quant-ph/9705030]

(using only Bayesian inference)
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What have we done?

1. States postulate
2. Schroedinger equation

3. Tensor product structure QMQM

And now... 
the details!

4. Locality
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“Measurement”:

the system “has” property

postulate 1.

... but
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redundancy (necessary for decoherence)initial memory st.
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The measurement problem:

1. States postulate
2. Schroedinger equation
3. Tensor product structure
4. Locality

NPQMNPQM

What is the perception of an apparatus/observer 
whose memory        is in the joint (entangled) state?

... whatever it is, it will be described through “something”. 
The most generic “something” will be a function       that 
can take values as q. states, numbers, letters, anything.

measurement outcome functionmeasurement outcome function
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Do we need perceptions? 1. States postulate
2. Schroedinger equation
3. Tensor product structure

NPQMNPQM

4. Locality
apparently yes!

Schroedinger eq. and the wavefunction “collapse” are 
incompatible 

(One says that evolution is unitary, the other that it's non-unitary!)

The only solution (Everett) is to  say that a unitary quantum 
observer perceives the world as non unitary

We have to introduce perceptions describes the perception of
an entangled observer
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Measurement outcome 1. States postulate
2. Schroedinger equation
3. Tensor product structure

NPQMNPQM

       no restrictions, except the ones from 4 (locality):

depends only on the local state of 

4. Locality
what hypothesis on      ?

we'll look only at the symmetry 
properties of       through envariance.

The symmetry stemming from entangled states.
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FLIPS (formulas) 1. States postulate
2. Schroedinger equation
3. Tensor product structure

NPQMNPQM

4. Locality

1. uniform state

2. measure:

3. swap the system:

4. measure again, on a memory 

first observer second observer

using Pauli op.                                 (or                              )

(or                    )
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Envariance 1. States postulate
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The local state of each observer (     or       ) 
is the same: swaps have no influence!

(if we could use partial traces, that's obvious!)

same state!

the measurement outcome is symmetric for swaps!



  

Correlations 1. States postulate
2. Schroedinger equation
3. Tensor product structure

NPQMNPQM

4. Locality

Nonetheless, if they join forces 
    and       can recover whether 
a swap has occurred (the 
correlations) using only 1, st. 
postulate.
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1. st postulate
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to recover whether a swap has occurred (the correlations) 
using only 1, st. postulate they can use the unitary:
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2. Schroedinger equation
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NPQMNPQM

4. Locality

This means that, by comparing their measurement 
outcomes, they can conclusively track swaps, but they 
cannot track eventual phases that are introduced.

The only way this can be done 
is by rotating a state by 90

o

(in NPQM, or QM, two states can be conclusively 
distinguished only if they're orthogonal!)
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4. Locality

... now, which are the only states that are either left 

untouched or made orthogonal by the Pauli operators?

to track the correlations conclusively we must have

depends on at least one of these:

(the eigenstates of the observable for S-G)

(so it's rotated to an orthogonal state by a Pauli op)
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... but        also satisfies the envariance symmetry!

where l is some free variable that 
keeps track of the variations of  

if       depends on one of the      ,         it must also 

depend (symmetrically) on all of them!
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QM is incompatible with all three:

1) Free will or measurement independence

2) Locality

3) Counterfactual definiteness (assignement of 

independently of whether the measurement is performed)

NOT IN CONTRAST 
WITH DETERMINISM!
(compatibilism)
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use Bell inequality on            

cannot be locally predetermined

QM is incompatible with all three:

1) Free will or measurement independence

2) Locality

3) Counterfactual definiteness (assignement of 

independently of whether the measurement is performed)

keep 1 and 2, need to relinquish 3!

Randomness
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Born rule 1. States postulate
2. Schroedinger equation
3. Tensor product structure

NPQMNPQM

4. Locality

i.e. the Born rule for the uniform state

equiprobability of each outcome

● Randomness

● symmetry of measurement outcomes

+
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use fine graining!

... what about the non-uniform case?

W.H.Zurek, PRL 90,120404

non uniform state

add a “fine-graining” secondary system g

now it's uniform



  

... at this point the argument should
be clear!!!

(If not, please ask questions!)

The rest of the talk is just book-
keeping to finalize the details...



  

... and to conclude the argument...

Bell inequality without     
          the Born rule



  

... and to conclude the argument...

Bell inequality without     
          the Born rule

...but first we need to generalize 
the argument from spins to d-
dimensional systems



  

Copy Redundancy (for einselection)

Measurement of observable

Measurement in NPQM 1. States postulate
2. Schroedinger equation
3. Tensor product structure
4. Locality

NPQMNPQM

system memory

redundancy (necessary for decoherence)initial memory st.



  

1. uniform state

2. measure:

3. swap the system:

“shift-and-multiply” instead of Pauli op.

4. measure again, on a memory 

first observer second observer
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Summarizing 1. States postulate
2. Schroedinger equation
3. Tensor product structure

NPQMNPQM

4. Locality

envariance correlations

symmetry

form of 
outcomes

d-dimensional extension of
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no Born rule, only use the properties of the measurement 
outcome               derived from symmetry considerations,
namely
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usual B.i. setup: two qubits + three observables

state of the qubits:
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measure A on the first and B on the second...

and analogously for B and C....
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cannot be
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locally!
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.. if you don't believe it, we can prove it with an inequality 
(satisfied by every pre-determined       and violated by ours)!

l Fraction of the parameter space l 
where A=B

Fraction of the parameter space l 
where A¹B

....what happens in our case?



  

Bertlemann's socks inequality 1. States postulate
2. Schroedinger equation
3. Tensor product structure

NPQMNPQM

4. Locality

Bell inequality violation!

¼ of the cases

¼ of the cases

¼ of the cases
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Summary

1. we used only the symmetry properties of 

    to conclude

2. we created a Bell inequality: either 

3. choose locality �  randomness

locality

predetermination of 

4. symmetries of              �  Born rule

(the measurement outcome must explicitly depend on the eigenstates of the observable)



  

Take home message

The non-probabilistic

part of quantum mechanics (+ locality)

is sufficient to derive all of it!

 
Lorenzo Maccone
maccone@mit.edu

1. States postulate
2. Schroedinger equation

3. Tensor product structure

NPQMNPQM

4. Locality

QMQM
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