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Quantum Discord (QD)

• Since its definition, it has received LOTS of attention. (36 arXiv titles over the last two 
years.)

• However, astonishingly, up to now QD lacked an (information-theoretic) operational 
interpretation. 

• Interpretations in terms of the gain (in work extraction) a Maxwell´s demon  obtains 
when operating quantumly with respect to classically have been provided. See Aharon´s 
talk!!!

• was introduced [Zurek (00), Ollivier& Zurek (01)] to quantify all quantum correlations.

• Quantum information community not happy about this  :-(

• Curiosity: discord is an asymmetric correlation quantifier... 
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We say that a quantifier of correlations has an operational meaning if it measures the 
performance or efficiency of a given physical (information processing) protocol.

Information-theoretic quantities in the spirit of Shannon: asymptoticly many copies.
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We say that a quantifier of correlations has an operational meaning if it measures the 
performance or efficiency of a given physical (information processing) protocol.

Information-theoretic quantities in the spirit of Shannon: asymptoticly many copies.

• Paradigmatic examples:
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Discord imbalances quantify the efficiencies in different strategies of state 
merging and dense coding!!!

QD has a clear operational interpretation: it quantifies the total singlet consumption in 
state merging!!!!

The intrinsic asymmetry in QD plays a natural role in this scenario!!!
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 [D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, 
M. Piani, & A. Winter, arXiv:1008.3205] 

 See also [V. Madhok & A. Datta, arXiv:1008.4135] 
 for related results!!!
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Outline of the talk
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Outline of the talk

• Definition of QD.

• Operational interpretation of QD.

• State merging and its total entanglement consumption.

• Conditional entropy and coherent information.

• Asymmetry of QD.

• QD, state merging and the quantum advantage of dense coding.

• Asymptotic regularization and concluding remarks.
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Quantum conditional entropy  and coherent information
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Quantum conditional entropy  and coherent information

• The classical (Shannon) entropy measures the (average) uncertainty in the value of a 
classical random variable a:

H(a) ≡ H({pa
i }) := −

∑

i

pa
i log2 pa

i
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Quantum conditional entropy  and coherent information

• Notation (for the reduced state of part X): S(X) = S(!X)

• The von Neumman entropy is the quantum counterpart: S(ρ) := −Tr[ρ log2 ρ]

• The classical (Shannon) entropy measures the (average) uncertainty in the value of a 
classical random variable a:

H(a) ≡ H({pa
i }) := −

∑

i

pa
i log2 pa

i
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• The classical conditional entropy measures the uncertainty left - on average - for the 
value of a given that the value of b has been discovered:

H(a|b) := H(a, b)−H(b)

• Classical info theory: H(a|b) is the average amount of (partial) classical information 
that A must give to B (who already knows the value of b) so that the latter gains full 
knowledge of (a,b) [Slepian & Wolf (71)]. 

• Given this interpretation, H(a|b) is of course non-negative. And, in fact, it can also be 
expressed as 

H(a|b) =
∑

j

pb
jH(a|b = j),

pa
i|b=j := pab

ij /pb
jwhere H(a|b=j) is the entropy of the conditional probability
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• The quantum conditional entropy is defined analogously:

but, in contrast, it can take negative values!!! 

S(A|B) := S(AB)− S(B),

Thursday, September 9, 2010



• The quantum conditional entropy is defined analogously:

but, in contrast, it can take negative values!!! 

S(A|B) := S(AB)− S(B),

• The possible negativity  was for a long time a hard obstacle to an operational 
interpretation for S(A|B)

• As a matter of fact, its opposite was even given a name of its own. The coherent 
information I(A⟩B)≔ - S(A|B). 

• Originally introduced in quantum info as purely-quantum quantity to measure the 
amount of quantum info conveyable by a quantum channel [Schumacher & Nielsen (96)].
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Quantum Discord
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Quantum Discord

• A “remedy” to negative quantum conditional entropy is [Henderson & Vedral (01), 
Ollivier & Zurek (01)]:

S(A|Bc) := min
{Nj}

∑

j

pB
j S(A|B = j),

over a positive rank-1 decomposition of the identity:
∑

j

Nj = 1B .
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Quantum Discord

• A “remedy” to negative quantum conditional entropy is [Henderson & Vedral (01), 
Ollivier & Zurek (01)]:

S(A|Bc) := min
{Nj}

∑

j

pB
j S(A|B = j),

over a positive rank-1 decomposition of the identity:
∑

j

Nj = 1B .

D(A|B) := S(A|Bc)− S(A|B).

• The quantum discord of AB with measurements on B [Ollivier & Zurek (01)]:
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Quantum Discord

• A “remedy” to negative quantum conditional entropy is [Henderson & Vedral (01), 
Ollivier & Zurek (01)]:

S(A|Bc) := min
{Nj}

∑

j

pB
j S(A|B = j),

over a positive rank-1 decomposition of the identity:
∑

j

Nj = 1B .

D(A|B) := S(A|Bc)− S(A|B).

• The quantum discord of AB with measurements on B [Ollivier & Zurek (01)]:

 [A Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, & A. Acín, PRA (2010)] 
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State merging and entanglement consumption

• A satisfactory operational interpretation for S(A|B) - and therefore also I(A⟩B) - was   
found in the context of state merging:This solves the well known puzzle of how to

interpret the quantum conditional entropy which

has persisted despite interesting attempts to un-

derstand it6. Since there are no conditional prob-

abilities for quantum states, S(A|B) is not an
entropy as in the classical case. But by going

back to the definition of information in terms of

storage space needed to hold a message or state,

one can make operational sense of this quantity.

Let us now turn to the protocol which allows

Alice to transfer her state to Bob’s site in the

above scenario (we henceforth adopt the com-

mon usage of refering directly to manipulations

on “states” – meaning a manipulation on a phys-

ical system in some quantum state). We call

this quantum state merging, since Alice is ef-

fectively merging her state with that of Bob’s.

Let us recall that in quantum information the-

ory, faithful state transmission means that while

the state merging protocol may depend on the

density operator of the source, it must succeed

with high probability for any pure state sent.

An equivalent and elegant way of expressing

this criterion is to imagine that ρAB is part of

a pure state |ψ〉ABR, which includes a reference

system R. Alice’s goal is to transfer the state
ρA to Bob, and we demand that after the pro-

tocol, the total state still has high fidelity with

|ψ〉ABR (meaning they are nearly identical); see

Figure 1 which includes a high-level description

of the protocol. The essentially element of state

merging is that ρR must be unchanged, and Al-

ice must decouple her state from R. This also
means (seemingly paradoxically) that as far as

any outside party is concerned, neither the clas-

sical nor quantum communication is coupled

with the merged state.

Let us now consider three instructive and simple

examples:

A B

R

!

A B

R

!

Figure 1: Diagrammatic representation of the

process of state merging. Initially the state |ψ〉 is
shared between the three systems R(eference),

A(lice) and B(ob). After the communication Al-

ice’s system is in a pure state, while Bob holds

not only his but also her initial share. Note

that the reference’s state ρR has not changed,

as indicated by the curve separating R from

AB. The protocol for state merging is as fol-

lows: Let Alice and Bob have a large number

n of the state ρAB. To begin, we note that we

only need to describe the protocol for negative

S(A|B), as otherwise Alice and Bob can share
nS(A|B) EPR pairs (by sending this number

of quantum bits) and create a state |ψ〉AA′BB′R

with S(AA′|BB′) < 0. This is because adding
an EPR pair reduces the conditional entropy by

one unit. However, S(A|B) < 0 is equivalently
expressed as S(A) > S(AB) = S(R), and it

is known10–12 that measurement in a uniformly

random basis on Alice’s n systems projects Bob
and R into a state |ϕ〉BR whose reduction to R

is very close to ρR. But this means that Bob

can, by a local operation, transform |ϕ〉BR to

|ψ〉ABR. Finally, by coarse-graining the random

measurement, Alice essentially projects onto a

good quantum code10–12 of rate −S(A|B); this
still results in Bob obtaining the full state ρAB ,

but now, just under −nS(A|B) EPR pairs are

also created. These codes can also be obtained

by an alternative construction13.

3

 [Horodecki, Oppenheim & Winter, Nature (05)] 
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3

• S(A|B) quantifies 
exactly the optimal 
amount of uses of a 
p e r f e c t q u a n t u m 
channel!!!

• In a sense this is 
s i m i l a r t o w h a t 
happened with H(a|b)...

 [Horodecki, Oppenheim & Winter, Nature (05)] 
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H(a|b), it is always non-negative.
However, the situation changes drastically for quantum

states, because S(A|B) can take negative values, e.g. for
pure entangled states. This fact was, for a long time,
an obstacle to an operational interpretation of S(A|B).
On the other hand, its opposite was identified as an im-
portant quantity in the context of quantum information,
and was even given a name of its own: coherent infor-
mation I(A〉B) := −S(A|B). Coherent information was
originally introduced to measure the amount of quan-
tum information conveyable by a quantum channel [12];
given that it is always non-positive in the classical case,
one may say that it is a purely quantum quantity.

Quantum discord.—One remedy to negative quantum
conditional entropy is to generalize the classical condi-
tional entropy to quantum using Eq. (1), as was done in
[3, 4] by defining S(A|Bc) := min{Nj}

∑
j p

B
j S(A|B = j),

where the minimization is over generalized measurements
{Nj}, with Nj ≥ 0 for all j and

∑
j Nj = 11B [13].

We also have S(A|B = j) = S(ρA|j), where ρA|j =

TrB(11A ⊗ N j
BρAB)/pBj with pBj = Tr(11A ⊗ N j

BρAB).
S(A|Bc) is always positive and can also be thought of
as a measure of the uncertainty left on average about A
given that B has been measured. For classical systems
both S(A|B) and S(A|Bc) coincide with the classical con-
ditional entropy, but in general S(A|Bc) is strictly larger
than S(A|B). The difference in these two quantity is
indeed the definition of the quantum discord with mea-
surements on B [4]

D(A|B) := S(A|Bc)− S(A|B). (2)

QD can be seen as the gap between the standard mea-
sure for total correlations present in a quantum state
ρAB , given by quantum mutual information I(A : B) :=
S(A) − S(A|B), and the Henderson-Vedral measure of
classical correlations I(A : Bc) := S(A)−S(A|Bc) [3, 14].
As D(A|B) = I(A : B) − I(A : Bc), the QD can be
considered a (asymmetric) quantifier of non-classical cor-
relations present in a quantum state. We will refer to
D(X|Y ) as to the “discord of XY measured by Y ”.

State merging and entanglement consumption.—A
fully convincing operational interpretation of quantum
conditional entropy and coherent information was given
with the introduction of the task of quantum state merg-
ing (SM) [8]. SM, say from A to B, is a process by which
A and B transfer A’s part of the state to B maintain-
ing the coherence with the reference C. A and B both
know the state they share, and they can apply arbitrary
local operations coordinated by classical communication
(LOCC). By acting on n copies of ψABC , their goal is to
end up with a state close to ψ⊗n

B′BC , such that the sub-
system B′ is in Bob’s hands and plays in the new state
exactly the same role as A played in the old one. Errors
are allowed, but they must vanish in the limit n → ∞. To
achieve their goal, A and B are allowed to use extra, pre-
established two-qubit maximally-entangled pairs (ebits),

FIG. 1. (Color online). State merging. Starting from a
tripartite state ψABC , Alice (A) sends her part of the state
to Bob (B), possibly using some extra entanglement or hav-
ing some entanglement leftover. The total entanglement con-
sumption in this process is equal to D(A|C) (see Eq.(5)).

but these constitute a valuable resource they must pay
for. It turns out that the value of S(A|B) quantifies ex-
actly the optimal amount—per copy of the state—of ebits
spent in the process. A positive value means that en-
tanglement must be consumed, while a negative amount
means not only that no extra entanglement is needed,
but also that A and B retain −S(A|B) = I(A〉B) ebits
per copy merged. See Fig. 1 for an illustration of SM.
A useful way to think of the role played by condi-

tional entropy in SM is to imagine a hypothetic entan-
glement bank in which A and B possess a joint account:
the entanglement balance after merging—in ebits, per
copy merged—is given precisely by −S(A|B). When
S(A|B) ≥ 0, A and B have to withdraw S(A|B) from
their account to perform SM. On the other hand, when
S(A|B) < 0 then the process can be completed without
any withdrawing. Moreover, after merging they end up
sharing I(A〉B) = −S(A|B) extra ebits of entanglement,
which they can deposit in their account for future use.
We remark that, considering only the actual systems

involved in merging, and not the bank account, A finishes
the merging process decoupled from B (B′ included) and
C, and there is therefore no entanglement left over be-
tween her and B. Given this, the bank-account picture
suggests to consider a more comprehensive balance, that
takes into account also the entanglement “lost” in the
process. Indeed, coherent information is positive only if
the state is entangled, and while A and B may end up
with “leftover” Bell pairs after SM, they do not share
anymore the starting entangled states. Thus, it is useful
and sensible to define the total entanglement consump-
tion as

Γ(A〉B) := EF (A : B) + S(A|B), (3)

where EF (A : B) := min(pi,ψAB
i )i

∑
i piS

(
TrA(ψAB

i )
)

is the entanglement of formation (EoF) of ρAB , with
the minimum taken over pure ensembles (pi,ψAB

i )i for
ρAB [15]. EoF quantifies the minimum amount of pure-

More technically,

• A and B know the state they have, !AB .

• C is a neutral (inactive) reference system. 

• LOCCs are for free, but quantum channels (singlets!) are expensive.

• Acting on N copies of the state, their goal is to end up with         |ψB′BC〉⊗N ,

|ψB′BC〉 → |ψABC〉, N →∞such that                                                  for                       .
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but these constitute a valuable resource they must pay
for. It turns out that the value of S(A|B) quantifies ex-
actly the optimal amount—per copy of the state—of ebits
spent in the process. A positive value means that en-
tanglement must be consumed, while a negative amount
means not only that no extra entanglement is needed,
but also that A and B retain −S(A|B) = I(A〉B) ebits
per copy merged. See Fig. 1 for an illustration of SM.
A useful way to think of the role played by condi-

tional entropy in SM is to imagine a hypothetic entan-
glement bank in which A and B possess a joint account:
the entanglement balance after merging—in ebits, per
copy merged—is given precisely by −S(A|B). When
S(A|B) ≥ 0, A and B have to withdraw S(A|B) from
their account to perform SM. On the other hand, when
S(A|B) < 0 then the process can be completed without
any withdrawing. Moreover, after merging they end up
sharing I(A〉B) = −S(A|B) extra ebits of entanglement,
which they can deposit in their account for future use.
We remark that, considering only the actual systems

involved in merging, and not the bank account, A finishes
the merging process decoupled from B (B′ included) and
C, and there is therefore no entanglement left over be-
tween her and B. Given this, the bank-account picture
suggests to consider a more comprehensive balance, that
takes into account also the entanglement “lost” in the
process. Indeed, coherent information is positive only if
the state is entangled, and while A and B may end up
with “leftover” Bell pairs after SM, they do not share
anymore the starting entangled states. Thus, it is useful
and sensible to define the total entanglement consump-
tion as

Γ(A〉B) := EF (A : B) + S(A|B), (3)

where EF (A : B) := min(pi,ψAB
i )i

∑
i piS

(
TrA(ψAB

i )
)

is the entanglement of formation (EoF) of ρAB , with
the minimum taken over pure ensembles (pi,ψAB

i )i for
ρAB [15]. EoF quantifies the minimum amount of pure-

More technically,

• A and B know the state they have, !AB .

• C is a neutral (inactive) reference system. 

• LOCCs are for free, but quantum channels (singlets!) are expensive.

• Acting on N copies of the state, their goal is to end up with         |ψB′BC〉⊗N ,

|ψB′BC〉 → |ψABC〉, N →∞such that                                                  for                       .

• For S(A|B) ≥ 0, A and B consume S(A|B) extra singlets (per copy of the state) and end 
up fully uncorrelated.
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with the introduction of the task of quantum state merg-
ing (SM) [8]. SM, say from A to B, is a process by which
A and B transfer A’s part of the state to B maintain-
ing the coherence with the reference C. A and B both
know the state they share, and they can apply arbitrary
local operations coordinated by classical communication
(LOCC). By acting on n copies of ψABC , their goal is to
end up with a state close to ψ⊗n

B′BC , such that the sub-
system B′ is in Bob’s hands and plays in the new state
exactly the same role as A played in the old one. Errors
are allowed, but they must vanish in the limit n → ∞. To
achieve their goal, A and B are allowed to use extra, pre-
established two-qubit maximally-entangled pairs (ebits),

FIG. 1. (Color online). State merging. Starting from a
tripartite state ψABC , Alice (A) sends her part of the state
to Bob (B), possibly using some extra entanglement or hav-
ing some entanglement leftover. The total entanglement con-
sumption in this process is equal to D(A|C) (see Eq.(5)).

but these constitute a valuable resource they must pay
for. It turns out that the value of S(A|B) quantifies ex-
actly the optimal amount—per copy of the state—of ebits
spent in the process. A positive value means that en-
tanglement must be consumed, while a negative amount
means not only that no extra entanglement is needed,
but also that A and B retain −S(A|B) = I(A〉B) ebits
per copy merged. See Fig. 1 for an illustration of SM.
A useful way to think of the role played by condi-

tional entropy in SM is to imagine a hypothetic entan-
glement bank in which A and B possess a joint account:
the entanglement balance after merging—in ebits, per
copy merged—is given precisely by −S(A|B). When
S(A|B) ≥ 0, A and B have to withdraw S(A|B) from
their account to perform SM. On the other hand, when
S(A|B) < 0 then the process can be completed without
any withdrawing. Moreover, after merging they end up
sharing I(A〉B) = −S(A|B) extra ebits of entanglement,
which they can deposit in their account for future use.
We remark that, considering only the actual systems

involved in merging, and not the bank account, A finishes
the merging process decoupled from B (B′ included) and
C, and there is therefore no entanglement left over be-
tween her and B. Given this, the bank-account picture
suggests to consider a more comprehensive balance, that
takes into account also the entanglement “lost” in the
process. Indeed, coherent information is positive only if
the state is entangled, and while A and B may end up
with “leftover” Bell pairs after SM, they do not share
anymore the starting entangled states. Thus, it is useful
and sensible to define the total entanglement consump-
tion as

Γ(A〉B) := EF (A : B) + S(A|B), (3)

where EF (A : B) := min(pi,ψAB
i )i

∑
i piS

(
TrA(ψAB

i )
)

is the entanglement of formation (EoF) of ρAB , with
the minimum taken over pure ensembles (pi,ψAB

i )i for
ρAB [15]. EoF quantifies the minimum amount of pure-

More technically,

• A and B know the state they have, !AB .

• C is a neutral (inactive) reference system. 

• LOCCs are for free, but quantum channels (singlets!) are expensive.

• Acting on N copies of the state, their goal is to end up with         |ψB′BC〉⊗N ,

|ψB′BC〉 → |ψABC〉, N →∞such that                                                  for                       .

• For S(A|B) ≥ 0, A and B consume S(A|B) extra singlets (per copy of the state) and end 
up fully uncorrelated.

• For S(A|B) < 0, not only do they perform the SM for free but they also retain -S(A|B)= 
I(A⟩B) singlets (per copy of the state), which they can use for future merings.
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H(a|b), it is always non-negative.
However, the situation changes drastically for quantum

states, because S(A|B) can take negative values, e.g. for
pure entangled states. This fact was, for a long time,
an obstacle to an operational interpretation of S(A|B).
On the other hand, its opposite was identified as an im-
portant quantity in the context of quantum information,
and was even given a name of its own: coherent infor-
mation I(A〉B) := −S(A|B). Coherent information was
originally introduced to measure the amount of quan-
tum information conveyable by a quantum channel [12];
given that it is always non-positive in the classical case,
one may say that it is a purely quantum quantity.

Quantum discord.—One remedy to negative quantum
conditional entropy is to generalize the classical condi-
tional entropy to quantum using Eq. (1), as was done in
[3, 4] by defining S(A|Bc) := min{Nj}

∑
j p

B
j S(A|B = j),

where the minimization is over generalized measurements
{Nj}, with Nj ≥ 0 for all j and

∑
j Nj = 11B [13].

We also have S(A|B = j) = S(ρA|j), where ρA|j =

TrB(11A ⊗ N j
BρAB)/pBj with pBj = Tr(11A ⊗ N j

BρAB).
S(A|Bc) is always positive and can also be thought of
as a measure of the uncertainty left on average about A
given that B has been measured. For classical systems
both S(A|B) and S(A|Bc) coincide with the classical con-
ditional entropy, but in general S(A|Bc) is strictly larger
than S(A|B). The difference in these two quantity is
indeed the definition of the quantum discord with mea-
surements on B [4]

D(A|B) := S(A|Bc)− S(A|B). (2)

QD can be seen as the gap between the standard mea-
sure for total correlations present in a quantum state
ρAB , given by quantum mutual information I(A : B) :=
S(A) − S(A|B), and the Henderson-Vedral measure of
classical correlations I(A : Bc) := S(A)−S(A|Bc) [3, 14].
As D(A|B) = I(A : B) − I(A : Bc), the QD can be
considered a (asymmetric) quantifier of non-classical cor-
relations present in a quantum state. We will refer to
D(X|Y ) as to the “discord of XY measured by Y ”.

State merging and entanglement consumption.—A
fully convincing operational interpretation of quantum
conditional entropy and coherent information was given
with the introduction of the task of quantum state merg-
ing (SM) [8]. SM, say from A to B, is a process by which
A and B transfer A’s part of the state to B maintain-
ing the coherence with the reference C. A and B both
know the state they share, and they can apply arbitrary
local operations coordinated by classical communication
(LOCC). By acting on n copies of ψABC , their goal is to
end up with a state close to ψ⊗n

B′BC , such that the sub-
system B′ is in Bob’s hands and plays in the new state
exactly the same role as A played in the old one. Errors
are allowed, but they must vanish in the limit n → ∞. To
achieve their goal, A and B are allowed to use extra, pre-
established two-qubit maximally-entangled pairs (ebits),

FIG. 1. (Color online). State merging. Starting from a
tripartite state ψABC , Alice (A) sends her part of the state
to Bob (B), possibly using some extra entanglement or hav-
ing some entanglement leftover. The total entanglement con-
sumption in this process is equal to D(A|C) (see Eq.(5)).

but these constitute a valuable resource they must pay
for. It turns out that the value of S(A|B) quantifies ex-
actly the optimal amount—per copy of the state—of ebits
spent in the process. A positive value means that en-
tanglement must be consumed, while a negative amount
means not only that no extra entanglement is needed,
but also that A and B retain −S(A|B) = I(A〉B) ebits
per copy merged. See Fig. 1 for an illustration of SM.
A useful way to think of the role played by condi-

tional entropy in SM is to imagine a hypothetic entan-
glement bank in which A and B possess a joint account:
the entanglement balance after merging—in ebits, per
copy merged—is given precisely by −S(A|B). When
S(A|B) ≥ 0, A and B have to withdraw S(A|B) from
their account to perform SM. On the other hand, when
S(A|B) < 0 then the process can be completed without
any withdrawing. Moreover, after merging they end up
sharing I(A〉B) = −S(A|B) extra ebits of entanglement,
which they can deposit in their account for future use.
We remark that, considering only the actual systems

involved in merging, and not the bank account, A finishes
the merging process decoupled from B (B′ included) and
C, and there is therefore no entanglement left over be-
tween her and B. Given this, the bank-account picture
suggests to consider a more comprehensive balance, that
takes into account also the entanglement “lost” in the
process. Indeed, coherent information is positive only if
the state is entangled, and while A and B may end up
with “leftover” Bell pairs after SM, they do not share
anymore the starting entangled states. Thus, it is useful
and sensible to define the total entanglement consump-
tion as

Γ(A〉B) := EF (A : B) + S(A|B), (3)

where EF (A : B) := min(pi,ψAB
i )i

∑
i piS

(
TrA(ψAB

i )
)

is the entanglement of formation (EoF) of ρAB , with
the minimum taken over pure ensembles (pi,ψAB

i )i for
ρAB [15]. EoF quantifies the minimum amount of pure-
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H(a|b), it is always non-negative.
However, the situation changes drastically for quantum

states, because S(A|B) can take negative values, e.g. for
pure entangled states. This fact was, for a long time,
an obstacle to an operational interpretation of S(A|B).
On the other hand, its opposite was identified as an im-
portant quantity in the context of quantum information,
and was even given a name of its own: coherent infor-
mation I(A〉B) := −S(A|B). Coherent information was
originally introduced to measure the amount of quan-
tum information conveyable by a quantum channel [12];
given that it is always non-positive in the classical case,
one may say that it is a purely quantum quantity.

Quantum discord.—One remedy to negative quantum
conditional entropy is to generalize the classical condi-
tional entropy to quantum using Eq. (1), as was done in
[3, 4] by defining S(A|Bc) := min{Nj}

∑
j p

B
j S(A|B = j),

where the minimization is over generalized measurements
{Nj}, with Nj ≥ 0 for all j and

∑
j Nj = 11B [13].

We also have S(A|B = j) = S(ρA|j), where ρA|j =

TrB(11A ⊗ N j
BρAB)/pBj with pBj = Tr(11A ⊗ N j

BρAB).
S(A|Bc) is always positive and can also be thought of
as a measure of the uncertainty left on average about A
given that B has been measured. For classical systems
both S(A|B) and S(A|Bc) coincide with the classical con-
ditional entropy, but in general S(A|Bc) is strictly larger
than S(A|B). The difference in these two quantity is
indeed the definition of the quantum discord with mea-
surements on B [4]

D(A|B) := S(A|Bc)− S(A|B). (2)

QD can be seen as the gap between the standard mea-
sure for total correlations present in a quantum state
ρAB , given by quantum mutual information I(A : B) :=
S(A) − S(A|B), and the Henderson-Vedral measure of
classical correlations I(A : Bc) := S(A)−S(A|Bc) [3, 14].
As D(A|B) = I(A : B) − I(A : Bc), the QD can be
considered a (asymmetric) quantifier of non-classical cor-
relations present in a quantum state. We will refer to
D(X|Y ) as to the “discord of XY measured by Y ”.

State merging and entanglement consumption.—A
fully convincing operational interpretation of quantum
conditional entropy and coherent information was given
with the introduction of the task of quantum state merg-
ing (SM) [8]. SM, say from A to B, is a process by which
A and B transfer A’s part of the state to B maintain-
ing the coherence with the reference C. A and B both
know the state they share, and they can apply arbitrary
local operations coordinated by classical communication
(LOCC). By acting on n copies of ψABC , their goal is to
end up with a state close to ψ⊗n

B′BC , such that the sub-
system B′ is in Bob’s hands and plays in the new state
exactly the same role as A played in the old one. Errors
are allowed, but they must vanish in the limit n → ∞. To
achieve their goal, A and B are allowed to use extra, pre-
established two-qubit maximally-entangled pairs (ebits),

FIG. 1. (Color online). State merging. Starting from a
tripartite state ψABC , Alice (A) sends her part of the state
to Bob (B), possibly using some extra entanglement or hav-
ing some entanglement leftover. The total entanglement con-
sumption in this process is equal to D(A|C) (see Eq.(5)).

but these constitute a valuable resource they must pay
for. It turns out that the value of S(A|B) quantifies ex-
actly the optimal amount—per copy of the state—of ebits
spent in the process. A positive value means that en-
tanglement must be consumed, while a negative amount
means not only that no extra entanglement is needed,
but also that A and B retain −S(A|B) = I(A〉B) ebits
per copy merged. See Fig. 1 for an illustration of SM.
A useful way to think of the role played by condi-

tional entropy in SM is to imagine a hypothetic entan-
glement bank in which A and B possess a joint account:
the entanglement balance after merging—in ebits, per
copy merged—is given precisely by −S(A|B). When
S(A|B) ≥ 0, A and B have to withdraw S(A|B) from
their account to perform SM. On the other hand, when
S(A|B) < 0 then the process can be completed without
any withdrawing. Moreover, after merging they end up
sharing I(A〉B) = −S(A|B) extra ebits of entanglement,
which they can deposit in their account for future use.
We remark that, considering only the actual systems

involved in merging, and not the bank account, A finishes
the merging process decoupled from B (B′ included) and
C, and there is therefore no entanglement left over be-
tween her and B. Given this, the bank-account picture
suggests to consider a more comprehensive balance, that
takes into account also the entanglement “lost” in the
process. Indeed, coherent information is positive only if
the state is entangled, and while A and B may end up
with “leftover” Bell pairs after SM, they do not share
anymore the starting entangled states. Thus, it is useful
and sensible to define the total entanglement consump-
tion as

Γ(A〉B) := EF (A : B) + S(A|B), (3)

where EF (A : B) := min(pi,ψAB
i )i

∑
i piS

(
TrA(ψAB

i )
)

is the entanglement of formation (EoF) of ρAB , with
the minimum taken over pure ensembles (pi,ψAB

i )i for
ρAB [15]. EoF quantifies the minimum amount of pure-

INGLETS

• A and B have a joint checking account 
in a entanglement bank from where they 
can borrow singlets.

• Then, S(A|B) = DEBIT - CREDIT.
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H(a|b), it is always non-negative.
However, the situation changes drastically for quantum

states, because S(A|B) can take negative values, e.g. for
pure entangled states. This fact was, for a long time,
an obstacle to an operational interpretation of S(A|B).
On the other hand, its opposite was identified as an im-
portant quantity in the context of quantum information,
and was even given a name of its own: coherent infor-
mation I(A〉B) := −S(A|B). Coherent information was
originally introduced to measure the amount of quan-
tum information conveyable by a quantum channel [12];
given that it is always non-positive in the classical case,
one may say that it is a purely quantum quantity.

Quantum discord.—One remedy to negative quantum
conditional entropy is to generalize the classical condi-
tional entropy to quantum using Eq. (1), as was done in
[3, 4] by defining S(A|Bc) := min{Nj}

∑
j p

B
j S(A|B = j),

where the minimization is over generalized measurements
{Nj}, with Nj ≥ 0 for all j and

∑
j Nj = 11B [13].

We also have S(A|B = j) = S(ρA|j), where ρA|j =

TrB(11A ⊗ N j
BρAB)/pBj with pBj = Tr(11A ⊗ N j

BρAB).
S(A|Bc) is always positive and can also be thought of
as a measure of the uncertainty left on average about A
given that B has been measured. For classical systems
both S(A|B) and S(A|Bc) coincide with the classical con-
ditional entropy, but in general S(A|Bc) is strictly larger
than S(A|B). The difference in these two quantity is
indeed the definition of the quantum discord with mea-
surements on B [4]

D(A|B) := S(A|Bc)− S(A|B). (2)

QD can be seen as the gap between the standard mea-
sure for total correlations present in a quantum state
ρAB , given by quantum mutual information I(A : B) :=
S(A) − S(A|B), and the Henderson-Vedral measure of
classical correlations I(A : Bc) := S(A)−S(A|Bc) [3, 14].
As D(A|B) = I(A : B) − I(A : Bc), the QD can be
considered a (asymmetric) quantifier of non-classical cor-
relations present in a quantum state. We will refer to
D(X|Y ) as to the “discord of XY measured by Y ”.

State merging and entanglement consumption.—A
fully convincing operational interpretation of quantum
conditional entropy and coherent information was given
with the introduction of the task of quantum state merg-
ing (SM) [8]. SM, say from A to B, is a process by which
A and B transfer A’s part of the state to B maintain-
ing the coherence with the reference C. A and B both
know the state they share, and they can apply arbitrary
local operations coordinated by classical communication
(LOCC). By acting on n copies of ψABC , their goal is to
end up with a state close to ψ⊗n

B′BC , such that the sub-
system B′ is in Bob’s hands and plays in the new state
exactly the same role as A played in the old one. Errors
are allowed, but they must vanish in the limit n → ∞. To
achieve their goal, A and B are allowed to use extra, pre-
established two-qubit maximally-entangled pairs (ebits),

FIG. 1. (Color online). State merging. Starting from a
tripartite state ψABC , Alice (A) sends her part of the state
to Bob (B), possibly using some extra entanglement or hav-
ing some entanglement leftover. The total entanglement con-
sumption in this process is equal to D(A|C) (see Eq.(5)).

but these constitute a valuable resource they must pay
for. It turns out that the value of S(A|B) quantifies ex-
actly the optimal amount—per copy of the state—of ebits
spent in the process. A positive value means that en-
tanglement must be consumed, while a negative amount
means not only that no extra entanglement is needed,
but also that A and B retain −S(A|B) = I(A〉B) ebits
per copy merged. See Fig. 1 for an illustration of SM.
A useful way to think of the role played by condi-

tional entropy in SM is to imagine a hypothetic entan-
glement bank in which A and B possess a joint account:
the entanglement balance after merging—in ebits, per
copy merged—is given precisely by −S(A|B). When
S(A|B) ≥ 0, A and B have to withdraw S(A|B) from
their account to perform SM. On the other hand, when
S(A|B) < 0 then the process can be completed without
any withdrawing. Moreover, after merging they end up
sharing I(A〉B) = −S(A|B) extra ebits of entanglement,
which they can deposit in their account for future use.
We remark that, considering only the actual systems

involved in merging, and not the bank account, A finishes
the merging process decoupled from B (B′ included) and
C, and there is therefore no entanglement left over be-
tween her and B. Given this, the bank-account picture
suggests to consider a more comprehensive balance, that
takes into account also the entanglement “lost” in the
process. Indeed, coherent information is positive only if
the state is entangled, and while A and B may end up
with “leftover” Bell pairs after SM, they do not share
anymore the starting entangled states. Thus, it is useful
and sensible to define the total entanglement consump-
tion as

Γ(A〉B) := EF (A : B) + S(A|B), (3)

where EF (A : B) := min(pi,ψAB
i )i

∑
i piS

(
TrA(ψAB

i )
)

is the entanglement of formation (EoF) of ρAB , with
the minimum taken over pure ensembles (pi,ψAB

i )i for
ρAB [15]. EoF quantifies the minimum amount of pure-

INGLETS
• The balance of the SM operation is 
given precisely by I(A⟩B).

• A and B have a joint checking account 
in a entanglement bank from where they 
can borrow singlets.

• Then, S(A|B) = DEBIT - CREDIT.
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H(a|b), it is always non-negative.
However, the situation changes drastically for quantum

states, because S(A|B) can take negative values, e.g. for
pure entangled states. This fact was, for a long time,
an obstacle to an operational interpretation of S(A|B).
On the other hand, its opposite was identified as an im-
portant quantity in the context of quantum information,
and was even given a name of its own: coherent infor-
mation I(A〉B) := −S(A|B). Coherent information was
originally introduced to measure the amount of quan-
tum information conveyable by a quantum channel [12];
given that it is always non-positive in the classical case,
one may say that it is a purely quantum quantity.

Quantum discord.—One remedy to negative quantum
conditional entropy is to generalize the classical condi-
tional entropy to quantum using Eq. (1), as was done in
[3, 4] by defining S(A|Bc) := min{Nj}

∑
j p

B
j S(A|B = j),

where the minimization is over generalized measurements
{Nj}, with Nj ≥ 0 for all j and

∑
j Nj = 11B [13].

We also have S(A|B = j) = S(ρA|j), where ρA|j =

TrB(11A ⊗ N j
BρAB)/pBj with pBj = Tr(11A ⊗ N j

BρAB).
S(A|Bc) is always positive and can also be thought of
as a measure of the uncertainty left on average about A
given that B has been measured. For classical systems
both S(A|B) and S(A|Bc) coincide with the classical con-
ditional entropy, but in general S(A|Bc) is strictly larger
than S(A|B). The difference in these two quantity is
indeed the definition of the quantum discord with mea-
surements on B [4]

D(A|B) := S(A|Bc)− S(A|B). (2)

QD can be seen as the gap between the standard mea-
sure for total correlations present in a quantum state
ρAB , given by quantum mutual information I(A : B) :=
S(A) − S(A|B), and the Henderson-Vedral measure of
classical correlations I(A : Bc) := S(A)−S(A|Bc) [3, 14].
As D(A|B) = I(A : B) − I(A : Bc), the QD can be
considered a (asymmetric) quantifier of non-classical cor-
relations present in a quantum state. We will refer to
D(X|Y ) as to the “discord of XY measured by Y ”.

State merging and entanglement consumption.—A
fully convincing operational interpretation of quantum
conditional entropy and coherent information was given
with the introduction of the task of quantum state merg-
ing (SM) [8]. SM, say from A to B, is a process by which
A and B transfer A’s part of the state to B maintain-
ing the coherence with the reference C. A and B both
know the state they share, and they can apply arbitrary
local operations coordinated by classical communication
(LOCC). By acting on n copies of ψABC , their goal is to
end up with a state close to ψ⊗n

B′BC , such that the sub-
system B′ is in Bob’s hands and plays in the new state
exactly the same role as A played in the old one. Errors
are allowed, but they must vanish in the limit n → ∞. To
achieve their goal, A and B are allowed to use extra, pre-
established two-qubit maximally-entangled pairs (ebits),

FIG. 1. (Color online). State merging. Starting from a
tripartite state ψABC , Alice (A) sends her part of the state
to Bob (B), possibly using some extra entanglement or hav-
ing some entanglement leftover. The total entanglement con-
sumption in this process is equal to D(A|C) (see Eq.(5)).

but these constitute a valuable resource they must pay
for. It turns out that the value of S(A|B) quantifies ex-
actly the optimal amount—per copy of the state—of ebits
spent in the process. A positive value means that en-
tanglement must be consumed, while a negative amount
means not only that no extra entanglement is needed,
but also that A and B retain −S(A|B) = I(A〉B) ebits
per copy merged. See Fig. 1 for an illustration of SM.
A useful way to think of the role played by condi-

tional entropy in SM is to imagine a hypothetic entan-
glement bank in which A and B possess a joint account:
the entanglement balance after merging—in ebits, per
copy merged—is given precisely by −S(A|B). When
S(A|B) ≥ 0, A and B have to withdraw S(A|B) from
their account to perform SM. On the other hand, when
S(A|B) < 0 then the process can be completed without
any withdrawing. Moreover, after merging they end up
sharing I(A〉B) = −S(A|B) extra ebits of entanglement,
which they can deposit in their account for future use.
We remark that, considering only the actual systems

involved in merging, and not the bank account, A finishes
the merging process decoupled from B (B′ included) and
C, and there is therefore no entanglement left over be-
tween her and B. Given this, the bank-account picture
suggests to consider a more comprehensive balance, that
takes into account also the entanglement “lost” in the
process. Indeed, coherent information is positive only if
the state is entangled, and while A and B may end up
with “leftover” Bell pairs after SM, they do not share
anymore the starting entangled states. Thus, it is useful
and sensible to define the total entanglement consump-
tion as

Γ(A〉B) := EF (A : B) + S(A|B), (3)

where EF (A : B) := min(pi,ψAB
i )i

∑
i piS

(
TrA(ψAB

i )
)

is the entanglement of formation (EoF) of ρAB , with
the minimum taken over pure ensembles (pi,ψAB

i )i for
ρAB [15]. EoF quantifies the minimum amount of pure-

INGLETS
• The balance of the SM operation is 
given precisely by I(A⟩B).

• A and B have a joint checking account 
in a entanglement bank from where they 
can borrow singlets.

• Then, S(A|B) = DEBIT - CREDIT.

• But what about the initial 
entanglement between A and B????

Thursday, September 9, 2010



• The initial entanglement between A and B is completely lost.

TOTAL CONSUMPTION = INITIAL BALANCE + DEBIT - CREDIT.

• Therefore, the total entanglement consumption during the process of SM has to take this 
initial amount into account: 
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• Therefore, the total entanglement consumption during the process of SM has to take this 
initial amount into account: 

Γ(A〉B) := EF (A : B) + S(A|B),

EF (A : B) := min
{pi,ψAB

i }

∑

i

piS
(
TrA[ψAB

i ]
)
,with !AB =

∑

i

pi|ψAB
i 〉〈ψAB

i |.for

• The entanglement of formation quantifies the minimum amount of pure-state entanglement 
that A and B consume to create (asymptotically many copies of)        by LOCC with 
strategies where each pure-state member of the ensemble is prepared independently.

!AB

•Thus,             quantifies the total entanglement consumed, by taking into account the 
amount A and B would have needed to prepare          by LOCC - and ``lost'' during SM - plus 
the amount used by the process of SM itself.       >>>>   EXTENDED STATE MERGING.

!AB

Γ(A〉B)
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Operational interpretation of QD

 Consider now D(A|C) := S(A|Cc)− S(A|C).

• For a pure tripartite state it is:
S(B) = EF (A : B) + I(B : Cc) := EF (A : B) + S(B)− S(B|Cc)⇒ EF (A : B) = S(B|Cc).

 [Koashi & Winter (04)] 
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• And also S(A|C) := S(AC)− S(C) = S(B)− S(AB) := −S(B|A).
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Operational interpretation of QD

 Consider now D(A|C) := S(A|Cc)− S(A|C).

• For a pure tripartite state it is:
S(B) = EF (A : B) + I(B : Cc) := EF (A : B) + S(B)− S(B|Cc)⇒ EF (A : B) = S(B|Cc).

 [Koashi & Winter (04)] 

• And also S(A|C) := S(AC)− S(C) = S(B)− S(AB) := −S(B|A).

Then D(A|C) = EF (A : B) + S(A|B) := Γ(A〉B)!!!

 [D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, & A. Winter, arXiv:1008.3205] 
Thursday, September 9, 2010
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Operational meaning of the asymmetry

• The asymmetry in discord has bothered many. From the previous result it follows 
immediately that 

. . . n o w w e c a n 
u n d e r s t a n d t h e 
asymmetry in terms 
differences in the 
cost of ESM!!!

D(A|C)−D(C|A) = Γ(A〉B)− Γ(C〉B)
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Operational meaning of the asymmetry

• The asymmetry in discord has bothered many. From the previous result it follows 
immediately that 

. . . n o w w e c a n 
u n d e r s t a n d t h e 
asymmetry in terms 
differences in the 
cost of ESM!!!

D(A|C)−D(C|A) = Γ(A〉B)− Γ(C〉B)

... for the first time a physical 
scenario where the values of QD 
provide concrete quantitative 
info about which of two possible 
strategies is most convenient!!!

D(A|C)−D(A|B) = Γ(A〉B)− Γ(A〉C)
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QD, dense coding, and extended state merging

• DC: by sending her part of       , A transmits classical info more efficiently than she 
could was the system classical [Bennett & Wiesner (92)].

!AB

• Conventional (pure-state) DC scenario: each letter in an alphabet is associated to a 
unitary rotation.
• Then the correction to the classical capacity (rate of information transmission per 
shared state used) is exactly the coherent information I(A⟩B) [Horodecki et al. (01), 
Winter (02), Bruss et al. (04)].
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• Conventional (pure-state) DC scenario: each letter in an alphabet is associated to a 
unitary rotation.
• Then the correction to the classical capacity (rate of information transmission per 
shared state used) is exactly the coherent information I(A⟩B) [Horodecki et al. (01), 
Winter (02), Bruss et al. (04)].

• The most general (mixed-state) DC scenario: A’s optimal encoding also consists of 
unitary rotations, but preceded by a pre-processing general quantum operation     
ΛA : MdA →Md′

A
.

χ(A〉B) := log2 d′
A + max

ΛA

I(A′〉B)Then the (single-shot) capacity is
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• DC: by sending her part of       , A transmits classical info more efficiently than she 
could was the system classical [Bennett & Wiesner (92)].

!AB

• Conventional (pure-state) DC scenario: each letter in an alphabet is associated to a 
unitary rotation.
• Then the correction to the classical capacity (rate of information transmission per 
shared state used) is exactly the coherent information I(A⟩B) [Horodecki et al. (01), 
Winter (02), Bruss et al. (04)].

• The most general (mixed-state) DC scenario: A’s optimal encoding also consists of 
unitary rotations, but preceded by a pre-processing general quantum operation     
ΛA : MdA →Md′

A
.

χ(A〉B) := log2 d′
A + max

ΛA

I(A′〉B)Then the (single-shot) capacity is

And the quantum advantage [Horodecki & Piani (07)]: ∆DC(A〉B)
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• We invoke another monogamy 
relation for pure tripartite 
states [Horodecki & Piani (07)]:

S(A) = EP (B : A) + ∆DC(C〉A)
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• We invoke another monogamy 
relation for pure tripartite 
states [Horodecki & Piani (07)]:

S(A) = EP (B : A) + ∆DC(C〉A)

⇒ D(A|C)−D(B|C) = Γ(A〉C)− Γ(A〉C) = S(A)− S(B)
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• We invoke another monogamy 
relation for pure tripartite 
states [Horodecki & Piani (07)]:

S(A) = EP (B : A) + ∆DC(C〉A)
S(B) = EP (A : B) + ∆DC(C〉B)

⇒ D(A|C)−D(B|C) = Γ(A〉C)− Γ(A〉C) = S(A)− S(B)

⇒ D(A|C)−D(B|C) = ∆DC(C〉A)−∆DC(C〉B)!!!

QD imbalance quantifies how much more efficient it is 
for C to do DC toward A as compared to toward B!!!!!

• And in fact, if C 
sends always  the same 
subsystem then it is:

⇒ D(A|C)−D(B|C) = χDC(C〉A)− χDC(C〉B)!!!
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Asymptotic regularizations

• All the relations we have found can be recast in their regularized version:

Γ∞(A〉B) := lim
n→∞

Γ(A〉B)ρ⊗n
AB

/n = EC(A : B) + S(A|B)

EC(A : B) = lim
N→∞

1
N

EF (A : B)ρ⊗N
AB

Total pure-state entanglement consumption of ESM for 
general state-creation strategies (with arbitrary LOCC)
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Asymptotic regularizations

D∞(A|B) = lim
N→∞

1
N

D(A|B)ρ⊗N
AB

⇒ D∞(A|B) = Γ∞(A〉B)

• All the relations we have found can be recast in their regularized version:

Γ∞(A〉B) := lim
n→∞

Γ(A〉B)ρ⊗n
AB

/n = EC(A : B) + S(A|B)

EC(A : B) = lim
N→∞

1
N

EF (A : B)ρ⊗N
AB

Total pure-state entanglement consumption of ESM for 
general state-creation strategies (with arbitrary LOCC)
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Conclusions

• We introduced extended state merging and its total entanglement consumption.

• QD quantifies the total singlet consumption in ESM.

• The intrinsic asymmetry in QD plays a natural role in this scenario: it tells us which of 
two possible strategies is cheapest.

• QD imbalance (with the measured system as the one in common) quantifies the 
difference in efficiency gain between DC toward two different receivers.

• These results define for the first time a physical scenario where the values of QD 
provide concrete quantitative info about the efficiency or cost involved in physical 
protocols.
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