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A continuous congestion model'

Discrete congested network model: G = (N, A) finite
oriented and connected graph, P C N x N (sources/dest.),
vs.a > 0 mass to be sent from s to d, Cs 4 (nonempty) set of
simple paths connecting s to d ((s,d) € P) and C their union.

Travelling time functions(congestion), for a € A w — t,(w)

(w > 0 flow on arc a), t, nonnegative, nondecreasing.

Cost of a path r € C given the flows (w,)qea:
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Unknown: arc flows (wg)q.c4 and mass travelling on each road

(hy)rec, constraints:

Vs,d — Z hra Wq = Zhrv Wq = 07 hT > 0. (1)

rcCs q raa

Pbm: what is a long-term steady state or equilibrium

flow-configuration?

Wardrop: used paths have to be shortest paths, given the flow

configuration (similar to Nash equilibrium).
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Wardrop equilibrium (1952): (wg)aca, (hr)rec satisfying (1)
such that, V(s,d) € P, Vr € Cs 4, if h, > 0, then:

Tw(r) = min{T, ("), " € Cs 4}

Beckman, McGuire, Winsten (1956) noticed that (wg)aeca,
(hr)rec is a Wardrop equilibrium iff it minimizes

C(w) = Z/Owa ta

acA

subject to (1).
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Continuous model: Given () some bounded open and
connected subset of R? and probability measures (o and i on

Q (or a transport plan 7 that is a joint probability on Q x Q)

one looks for a probability measure () on C(|0, 1], 2)
concentrated on absolutely continuous curves such that

el = po, e1§Q) = p1 or (ep,e1)iQ = m, with e;(v) = ~(¢)

that is an equilibrium i.e. (in a sense to be made precise) such
that () is supported by geodesics for a metric {g depending on
Q) itself (congestion).
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Intensity of traffic ig € M(R), defined by

/sodicg = /C([O - (/01 w(v(t))lﬁ(t)ldﬁdQ(v)

for all ¢ € C(Q,R,). Congestion effect:

Eo(x) == glig(z)), for ig < LT (+00 otherwise).

for a given increasing function g : R, — R,. Denote by
Q(po, 1) (resp.Q(m)) the set of probabilities () such that
(e0§Q, e18Q) = (po, p1) (resp. (eo, €1)iQ = ).
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Consider then

inf H(ip(x))dz
QEQ(MO,Ml)/Q ( Q( ))
where H' = g, H(0) = 0.

Under the assumptions:

e H is strictly convex and increasing on R, with H(0) = 0,

e there exists p > 1, and positive constants a and b such that
azl < H(z) <b(zP+1) for all z € Ry,

e the following set

QP (po, 1) =1{Q € Q(po, 1) : ig € L} (3)

1s nonempty,

then (2) has a solution (and the optimal i is unique).
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Not easy to check a priori that QP (g, 1) # 0, but
it holds whenever o and p; are LP (De Pascale, Pratelli),

it holds for pg and pq have finite support, d = 2 and p < 2,

also when Q = [0, 1]% and o and p; are respectively the

one-dimensional Hausdorff measures of the vertical sides of

the square.
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In dimension 2, Q%(puo, 11) = 0 as soon as g — 1 ¢ HY'.

Indeed associate to every @ € Q(uo, pt1) the vector-measure o¢
defined by, VX € C(Q,R?):

/ﬁX(fC)dUQ(fE) :/C([O,l],ﬁ) (/OlX(v(t))-ﬁ(t)dQ dQ().

It is easy to check:
diV(O‘Q) — o — U1, and ’O‘Q| < iQ.

Hence, if 19 — p1 ¢ H'' there is no L?, vector-field with
divergence (g — f41.
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Link with equilibria Further assume that H is differentiable
with H'(z) < C(1+ 2P~ 1) and p<d/(d—1) ie q:=p >d.
Geodesic distance : £ € C(Q), £ >0, x,y in oh

ce(x,y) = inf / E(y (t)|dt

v :v(0)=z,v(1)=y

for £ only L9, £ > 0:

ce(r,y) =sup{c(z,y) :c€ A(§)},

where
A(€) = {limeg, in O+ (€1)n € CO), &0 >0, 6 — € in LT}

(well defined and Hoélder continuous by the Sobolev
imbeddings).
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Other characterizations of ¢;:

Ce = limcp

also ¢¢(x, .) is the viscosity solution (i.e. largest a.e.
subsolution) of the eikonal equation

Vu| =¢&, u(x) =0.

For £ € C(Q), £ > 0 and « an absolutely continuous curve, set

/ (v () [5(8)at

for Q € QP (ug, 1), £ € L1, £ >0, and (£,), > 0, continuous,
&, — €in L9, then (Lg, ), converges strongly in L*(C, Q) to
some limit which is independent of the approximating sequence
(€r)rn and which will again be denoted L.
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Theorem 1 Let Q € QP (ug, 1) with Q :==p Q7 (with
7 € I(po, p11)), and set € := H'(ig), then Q solves (2) iff:

1. 7 solves the Monge-Kantorovich problem:

inf /_ Gl y)dm(z,y),
QxQ

mell(po,p1)
2. for Q-a.e. 7y, one has:
Lz(7y) = ¢(7(0),v(1)).

The second condition is the Wardrop equilibrium condition.

Variant : the transportation plan 7 is prescribed, then one has
a similar variational characterization by considering

in /Q Hig(x))da.

QeQ(m)
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Minimal flow formulation'

For Q € QP (ug, p1) define as before every the vector-measure
og defined by, VX € C(Q,R%):

/ﬁX(x)da@(x) = /C([O,lm (/OlX(v(t))-#(t)dQ dQ()

which is a kind of vectorial traffic intensity.

It is easy to check:

div(og) = po — 1, 0o -n =20, and |og| < ig.
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Since H is increasing, it proves that the value of the scalar

problem (2) is larger than that of the minimal flow problem
(setting : H(o) = H(|o|)):

inf /Q H(o(x))dx (6)

ceLP(Q,R?) : div(c)=po—p1

Conversely, if ¢ is a minimizer of (6) and Q € QP (ug, ;1) is such
that ig = |o| then @ solves the scalar problem (2) (i.e. is an

equilibrium).

Minimal flow formulation/2



Minimal flow formulation 16

Heuristic construction (assuming o Lipschitz, g, @1 Lipschitz
densities > ¢ > 0). Consider (as in Moser, Dacorogna-Moser
and more recently Evans and Gangbo) the ODE

. B o(X(t,x))
X(t,z) = (1= t)puo(X (¢, 3)) + tu (X (¢, 2))

and define Q by

, X(0,2) = =.

Q= 0x(.,z) @ Mo

Set py = (1 — t)pup + tpur and
o(x)
pe ()

then by construction p; solves the continuity equation:

v(t,x) =

(9t,ut -+ div(,utv) =0
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By construction egf@ = po and because of the continuity
equation, X (¢, . )fiuo = pur = (1 — t)po + tp1. In particular the
image of po by the flow at time 1, X (1,.) is p1, which proves
that e18Q = p1 hence Q € Q(uo, 11). Moreover for every

test-function ¢:

[ tig= [ [ oot x .0

/ / x)|v(t, x)|pe(z)dxdt
- [ e@lo(a)ide

so that iz = |o| and then Q is optimal.
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The previous argument works as soon as ¢ € W1, By duality,

the solution of (6) is 0 = VH*(Vu) where H* is the Legendre
transform of ‘H and u solves the PDE:

divVH*(Vu) = po—p1, in €,

(7)
VH*(Vu) v = 0, on 02,

Let us recall that H' = g where ¢ is the congestion function,
natural to have g(0) > 0 : the metric is positive even if there is
no traffic, so that the radial function H is not differentiable at O
and then its subdifferential at 0 contains a ball. By duality, this
implies VH* = 0 on this ball which makes (7) very degenerate.
A reasonable model of congestion is g(t) = A + P! for t > 0,
with p > 1 and A > 0, so that

1 1
H(o) = “lol”+Alo], H7(2) = — (2] = A)3., with ¢ =
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For a general vector field v under very mild assumptions, the
most general meaning that we can give to the flow of v is in
terms of the so-called superposition principle
(Ambrosio-Crippa), the continuity equation:

(9tut -+ div(v,ut) = O, (9)

Définition 1 Let () be concentrated on the integral curves of v,
in the sense that

/ _ v(t)—v(o)—/ v(s,7(s)) ds| dQ(y) =0. (10)
C([0,1];92) 0

If we define the curve of measures ,LL? through

/_ o(@) duQ(z) = / o(1(1)) dQ(Y) for every o € C(@)
C([0,1];€2)

Q
(11)
then this curve ,LL? is called superposition solution of (9).

Minimal flow formulation/6



Minimal flow formulation 20

Theorem 2 (Superposition principle) Let u; be a positive
measure-valued solution of the continuity equation

%Mt -+ diV(V,ut) — O,

with the vector field v satisfying the following condition

1
v(t,z)|
MBD 4y (2) dt < +oo,

then u: 1s a superposition solution.
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One can still relate (6) and (2) under quite weak assumptions
thanks to the superposition principle (Ambrosio-Crippa),
assume that o and p; have LP densities bounded from below by
a positive constant, define o, u; as before and ¢ = o/u; . Since

0

a,&t + le(b'\,ut) — O,

with initial datum pg. By the superposition principle, u; is a
superposition solution: p; = ,LL? with @ € OP(uo, n1) and

ig = |o| so that @ solves (2). In particular the values of (6) and
(2) coincide.

Minimal flow formulation/8



Minimal flow formulation 22

To sum up, we have seen how to construct an optimal () for

inf H(ip(x))dx
QEQ(MO,Ml)/Q ( Q( ))
using the flow of the ODE
o(t, )
(L = t)po(x) + tpa ()

1(t) =o(t,(1), ot z) =

and 0 = VH*(Vu) with

divVH* (Vu) = po — p1, in Q, VH*(Vu) - v =0, on 0.
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e Cauchy Lipschitz case : requires o to be Lipschitz, not
realistic in traffic congestion models,

e in the general case, using supeposition solutions of the
continuity equation: not really satisfactory, the regularity of

the curves charged by () is quite poor, no flow, no group
property...
Assume 2 Lipschiz, pg, n1 have Lipschitz densities > ¢ > 0.

Intermediate approach : DiPerna-Lions theory. Requires ¢ to

have Sobolev regularity and an L* bound on

div(o) 1 po— 11

div(5) =

2V,ut-0: QV/Lt'O'.
Hi Hi Hi Hi

The issue then becomes proving Sobolev regularity and an L*°

bound on o.
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Regularity I

Aim: prove Sobolev and L™ estimates for the optimizer o of (6)

under the following assumptions:

i) p; = f;£4, with f; € Lip (Q) and f; > ¢ > 0, for i = 0, 1;

(i) © open connected bounded subset of RY having Lipschitz

boundary.

in the case where the congestion takes the form

H(o) = }9|a|p+|a|, H(2) = ~(

with ¢ > 2.
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so that the optimal o is

o= (]Vu| — 1)1_1%.

where u solves the very degenerate PDE:

av((ivul-1)' " Y =F=fo-fi. (14)

+ |Vul

with Neumann boundary condition

(|V’LL\ - 1):]:1;—2‘ v =0,

Note that there is no uniqueness for u but there is for o.
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Setting
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together with arguments originally due to Bojarski and Iwaniec
for the p-laplacian, we first get:

Theorem 3 G € W12(Q), where the function G is defined by

Vu(x)
[ Vau(z)

G(2) == G(Vu(x)) = (Vu(x)| - 1)

(15)
Corollary 1
o= VH* (Vu) = |¢]T G € WL(Q), (16)

for suitable exponents r = r(d, q) given by

/

2, Zfd:q:27
r(d,q) = < any value <2, ifd=2, q¢> 2,

d :
\ (d—l)qq-|—2_d7 Zf d> 2.
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Regularizing (14) and using the fact that convex transforms of

derivatives of the solution are subsolutions (in fact we use

(O1u — 2)% of an elliptic PDE and using a bootstrap argument,

we can prove the following:
Theorem 4 If u solves (14), then u is globally Lipschitz on 2.

This enables us to define a flow a la DiPerna-Lions for the ODE
related to the traffic congestion problem.
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‘Other formulations, numerical approximation'

Here we consider the case where the transport plan ~ is fixed
(so that the equivalence with the minimal flow problem does
not hold any more). Recall that our study of equilibria relies on

the following convex optimization problem:

Pyt [ Hwigleniz: e} an

We will also assume here that d =2 and ¢ > 2 1.e. p < 2.
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For every x € {2 and & > 0, let us define

H*(Qj,f) = Sup{f’i — H(:Cvi)? L 2> 0}7 50(56) = g(x70)'

Let us now define the functional

J(€) = / H* (2, €(x) ) — /_ @) (9

and consider:
(P*)sup{—=J(§) : £ € L9, § = o}t (19)
Theorem 5 If the domain of (P) is nonempty, then
min(P) = max(P*) (20)

and & € L1 solves (P*) if and only if £ = &g for some QQ € Q(7)
solving (P).
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In the sequel, we will numerically approximate the unique

equilibrium metric {g by a descent method on (P*). One can

recover the corresponding equilibrium intensity ig by inverting
the relation £(x) = g(z,ig(x)).
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‘ Discretization I

Start with the dual formulation

inf J(€) = LH*(x,f(x))dx - W(¢)

gean 525029(70)

to compute the optimal metric £ = 0;H (z,ig(x)). Case of a
fixed (discrete) transport plan v = ) vagd(s, 75):

W(E) =) apce(Sa, Tp).

Where c¢ (S, .) is the viscosity solution (or largest W7 a.e.

subsolution) of the Eikonal equation
VUl =& UA(S)=0 (21)

(and we assume that ¢ > 2 so that the domain of the primal is

nonempty).
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Space discretization, mesh size h, consistent (Souganidis,
Barles-Souganidis, Rouy-Tourin) discretization of the Eikonal

equation:

<max{<ui,j — U1 ), Uy —Ussr ), 0}>2
e

(max{(ui,j — U 1), Usj —Us 1), 0}>2

— .. 2
hy o (gz,]) .

can be solved efficiently by Sethian’s Fast Marching Method.
Notation : cg(S, T'), discrete functional

JhE) =12 H (4, 5:65) — Y ct(Say T5) Vs,

1,9 r,8

Note that each J" is convex.

Other formulations and numerical approximation/5



Discretization 34

['-convergence:

Theorem 6 The sequence of functionals J* I'—converges with

respect to the weak L9 convergence to the limit functional J.

Moreover, as the sequence (J");, is equi-coercive and every

functional, J included, is strictly convex, (strong) convergence
of the unique minimaizers and of the values of the minima is

guaranteed.
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Solving the discrete problem by a subgradient descent method,
J" involves a differentiable part and a convex homogenous one.

Problem : compute at each iteration a subgradient of the second

part. Not straightforward but possible recursively by a method
that uses the same recursivity as the FMM. We call this method
the Fast Subgradient Marching Method, it enables to compute
efficiently (IV?log(NN)) a supergradient of the (discrete) geodesic
distance with respect to the values of the metric on a grid. See

the problem as an optimization problem over metrics.
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There are several other applications of this strategy to compute
by FMM a supergradient of distances with respect to metrics:
inverse problems in travel-time tomography for instance.
Optimal design of obstacles to prevent mass transfer or the

invasion of an army (Buttazzo):

max OéiE LisYs
: > aite (i, yi)

/gzx

subject to £ < £ < ¢ and
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