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Starting point: motion of a finite number of particles.

Discrete particle model

N particles Pi := (mi, xi, vi), i = 1, . . . , N ,
with positive mass mi satisfying

PN
i=1mi = 1

ordered positions x1 < x2 < . . . < xN−1 < xN ,
and velocities vi.

At the initial time t = 0 the particles are disjoint and start to move freely
with constant velocity:

xi(t) := xi(0) + vi(0)t, vi(t) := vi.

The first collision time t = t1 correspond to

xj(t
1) = xj+1(t1) = . . . = xk(t1) for some indices j < k.

The particles Pj , Pj+1, . . . , Pk collapse in a new particle P
with mass m := mj + . . .+mk and

“barycentric” velocity v :=
mjvj(t

1) +mj+1vj+1(t1) + . . .+mkvk(t1)

m

After the collision the particles Pj , . . . , Pk stick in the same big particle
P which freely moves with fixed velocity v up to the next collision t2.

4



Sticky particles Lagrangian representation Measures Tools of convex analysis

Measure-theoretic description

We thus have:
a (finite) sequence of collision times 0 < t1 < t2 < . . .
in each interval [th, th+1) a finite number Nh of (suitably relabelled)
particles P1(t), · · · , PNh(t), Pi(t) := (mi, xi(t), vi(t)).

We can introduce the measures

ρt :=

NhX
i=1

miδxi(t) ∈ P(R) (ρ v)t :=

NhX
i=1

mi vi δxi(t) ∈M(R) if t ∈ [th, th+1).

They satisfy the 1-dimensional pressureless Euler system in the sense
of distributions(

∂tρ+ ∂x(ρ v) = 0,

∂t(ρ v) + ∂x(ρ v2) = 0,
in R× (0,+∞); ρ|t=0

= ρ0, v|t=0
= v0,

and the Oleinik entropy condition

vt(x2)− vt(x1) ≤ 1

t
(x2 − x1) for ρt-a.e. x1, x2 ∈ R, x1 ≤ x2.
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Main problem: continuous limit

Consider a sequence of discrete initial data µn0 := (ρn0 , ρ
n
0 v

n
0 ) converging to

µ0 = (ρ0, ρ0v0) in a suitable measure-theoretic sense and let
µnt = (ρnt , ρ

n
t v

n
t ) be the (discrete) solution of SPS.

Problem

I Prove that the limit µt = (ρt, ρtvt) of the SPS µnt = (ρnt , ρ
n
t v

n
t ) as

n ↑ +∞ exists.

I Find a suitable characterization of µt

I Show that (ρt, ρtvt) solves the pressureless Euler system(
∂tρ+ ∂x(ρ v) = 0,

∂t(ρ v) + ∂x(ρ v2) = 0,
in R× (0,+∞); ρ|t=0

= ρ0, v|t=0
= v0,

and satisfy Oleinik entropy condition.
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Main contributions
• Existence and convergence:

I Grenier ’95, E-Rykov-Sinai ’96: first existence and convergence result.
I Brenier-Grenier ’96: Characterization of the limit in terms of a

suitable scalar conservation law, uniqueness.
I Huang-Wang ’01, Nguyen-Tudorascu ’08, Moutsinga ’08: further

refinements.

Basic assumptions:
ρn0 → ρ0 in the L2-Wasserstein distance,

vn0 = v0 is given by a continuous function with (at most) linear growth.

In particular the result cover the case when ρn0 , ρ0 have a common
compact support and ρn0 → ρ0 weakly in the sense of distribution (or,
equivalently, in the duality with continuous functions).

• Pioneering ideas which lies (more or less explicitly) at the core of the
papers by E-Rykov-Sinai and Brenier-Grenier have been
introduced by

I Shnirelman ’86 and further clarified by
I Andrievwsky-Gurbatov-Soboelvskĭı ’07 in a formal way.

• Different approaches and models:

I Bouchut-James ’95, Poupaud-Rascle ’97
I Sobolevskĭı ’97, Boudin ’00: viscous regularization.
I Wolansky ’07: particles with finite size.
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The Brenier-Grenier formulation

For every probability measure ρ ∈ P(R) we introduce the cumulative
distribution function

Mρ(x) := ρ
`
(−∞, x]

´
, x ∈ R, so that ρ = ∂xMρ in D ′(R).

Main idea: study the evolution of Mt := Mρt , where ρt is the solution of
the SPS.

Theorem (Brenier-Grenier ’96)

M is the unique entropy solution of the scalar conservation law

∂tM + ∂xA(M) = 0 in R× (0,+∞)

where A : [0, 1]→ R is a continuous flux function depending only on the
initial data ρ0 and v0. It is characterized by

A′(M0(x)) = v0(x).
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Monotone rearrangement
Point of view of 1-dimensional optimal transport: instead of using
the cumulative distribution function Mρ(x) = ρ

`
(−∞, x]

´
, we

represent each probability measure ρ by its monotone rearrangement
Xρ : (0, 1)→ R

Xρ(w) := inf
n
x ∈ R : Mρ(x) > w

o
w ∈ (0, 1)

which is the so-called pseudo-inverse of Mρ.

The map Xρ is nondecreasing and right-continuous.
It pushes the Lebesgue measure λ := L 1

|(0,1) on (0, 1) onto ρ, i.e.

(Xρ)#L 1
|(0,1) = ρ, L 1(X−1

ρ (B)) = ρ(B) for every Borel set B ⊂ R

It satisfies the change of variable formulaZ
R
φ(x) dρ(x) =

Z 1

0

φ(Xρ(w)) dw

for every nonnegative/bounded Borel function φ : R→ R. In particular,

m2(ρ) :=

Z
R
|x|2 dρ(x) =

Z 1

0

˛̨
Xρ(w)

˛̨2
dw =

‚‚Xρ‚‚2

L2(0,1)
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Wasserstein distance and the L2 isometry

The map ρ 7→ Xρ is a one-to-one correspondence between

the space P2(R) of probability measures with finite quadratic moment
m2(ρ) =

R
R |x|

2 dρ(x) < +∞

and

the closed convex cone K of all the nondecreasing function in L2(0, 1)
(among which we can always choose the right-continuous representative).

L2-Wasserstein distance

W2(ρ1, ρ2) between ρ1, ρ2 ∈ P2(R):

W 2
2 (ρ1, ρ2) :=

Z 1

0

˛̨
Xρ1(w)−Xρ2(w)

˛̨2
dw =

‚‚Xρ1 −Xρ2‚‚2

L2(0,1)

In this way ρ↔ Xρ is an isometry between (P2(R),W2) and
(K, ‖ · ‖L2(0,1)).
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A description of the evolution by the L2-projection on K

We denote by PK(Y ) the L2 projection of Y ∈ L2(0, 1) on K, i.e.

X = PK(Y ) ⇔ ‖Y −X‖ = min
˘
‖Y − Z‖ : Z ∈ K

¯
To the (discrete) data µt = (ρt, ρtvt) we associate the functions
(Xt, Vt) ∈ K× L2(0, 1) by

Xt := Xρt , Vt := vt ◦Xt.

Notice that the second component of (Xt, Vt) do not span the whole space
L2(R) in general, but it is contained in the closed subspace

HXt :=
n
V = v ◦Xt for some Borel map v ∈ L2

ρt(R).
o

Theorem (First Lagrangian representation)

A family µt = (ρt, ρtvt) is a solution of the (discrete) SPS if and only if

Xt = PK(X0 + tV0).
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Stability properties (I)
Let X̃t := X0 + tV0 be associated to the measures

ρ̃t = (X̃t)#L 1
|(0,1) =

NX
i=1

miδxi+tvi

corresponding to the “collision free” motion, when the particles do
not see each other.
Thus the solution Xt can be computed by “projecting” the Lagrangian free
motion X̃t on K.
Since the projection operator PK is a contraction in L2(0, 1), the
representation formula

Xt = PK(X0 + tV0) = PK(X̃t)

easily yields

Corollary

If X1
t , X

2
t are the Lagrangian representation of two (discrete) solutions

ρ1
t , ρ

2
t of the SPS we have

‖X1
t −X2

t ‖L2(0,1) ≤ ‖X
1
0 −X2

0‖L2(0,1) + t‖V 1
0 − V 2

0 ‖L2(0,1).
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The polar cone and the subdifferential of the indicator
function of K

The polar cone K◦ is defined by

Y ∈ K
◦ ⇔ (Y |Z) ≤ 0 for every Z ∈ K

IK is the indicator (convex, lower semicontinuous) function of K in L2(0, 1)

IK(X) =

(
0 if X ∈ K,

+∞ otherwise,

with subdifferential ∂IK : L2(0, 1)→ 2L
2(0,1).

Ξ ∈ ∂IK(X) if and only if X ∈ K and one of the following equivalent
conditions holds

(Ξ|Z −X) ≤ 0 for every Z ∈ K,

Ξ ∈ K
◦ and (Ξ|X) = 0,

PK(X + Ξ) = X.
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Differential inclusion (I)

Recall that to the (discrete) data µt = (ρt, ρtvt) we associate the functions
(Xt, Vt) ∈ K× L2(0, 1) by

Xt := Xρt , Vt := vt ◦Xt.

Theorem (Second Lagrangian representation)

A family µt = (ρt, ρtvt) is a solution of the (discrete) SPS if and only if X
is the unique strong solution of the differential inclusion

d

dt
Xt ∈ −∂IK(Xt) + V0, lim

t↓0
Xt = X0.
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Stability properties (II)
By general results on solution of differential inclusion of the type
X ′t ∈ −∂φ(Xt) + Ft, φ convex,

X is right-differentiable in each point and the velocity field vt can be
recovered by the formula

Vt =
d+

dt
Xt = vt ◦Xt ∈ HXt .

One gets [S. ’96] the following integral estimate for the velocity component:

Corollary

If X1
t , X

2
t are the Lagrangian representation of two (discrete) solutions

ρ1
t , ρ

2
t of the SPS, their velocities V `t = d

dt
X`
t satisfyZ t

0

‖V 1
r −V 2

r ‖2L2(0,1) dr ≤ C(1+t)
“X

`

‖X`
0‖+‖V `0 ‖

”“
‖X1

0−X2
0‖+‖V 1

0 −V 2
0 ‖
”
.

Moreover, if ψ : R→ R is convex then the map

t 7→ Ψ(Vt) =

Z 1

0

ψ(Vt(w)) dw is non increasing in [0,+∞).
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Further references: scalar conservation laws, L2-theory and
Wasserstein distance

I The link between the
Brenier-Grenier formulation based on the scalar conservation law

∂tM + ∂xA(M) = 0

and the
Hilbertian theory of gradient flows like d

dt
Xt ∈ −∂IK(Xt) + V0

is not at all surprising, after the illuminating recent paper

Brenier ’09: L2–formulation of multidimensional scalar
conservation laws

whose ideas, in particular concerning the SPS, could be traced back to
other papers by Brenier in 2004-2005.

I Wasserstein contraction properties of solutions of one–dimensional
scalar conservation laws have also been recently obtained by
Bolley-Brenier-Loeper ’05
and further developed by Carrillo-Di Francesco-Lattanzio ’06

17



Sticky particles Lagrangian representation Measures Tools of convex analysis

Differential inclusion (II)
Recall that to the (discrete) data µt = (ρt, ρtvt) we associate the functions
(Xt, Vt) ∈ K× L2(0, 1) by

Xt := Xρt , Vt := vt ◦Xt.

Theorem (Third Lagrangian representation)

A family µt = (ρt, ρtvt) is a solution of the (discrete) SPS if and only if X
is the unique strong solution of the differential inclusion

t
d

dt
Xt ∈ −∂IK(Xt) +Xt −X0, lim

t↓0

Xt −X0

t
= V0.

Up to the rescaling τ = log t, X̂τ = Xt, the equation is equivalent to

d

dτ
X̂τ ∈ −∂IK(X̂τ ) + X̂τ −X0;

it is the gradient flow in L2(0, 1) of the functional

Φ(X) := IK(X)− 1

2
‖X −X0‖2

which is (−1)-convex.
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A metric space for the measure-momentum couples (ρ, ρv)
We consider the space of couples (ρ, ρv), with ρ ∈ P2(R) and v ∈ L2

ρ(R):

V2(R) :=
n
µ = (ρ, ρv) ⊂ P2(R)×M(R) : v ∈ L2

ρ(R)
o
.

thus ρ is a probability measure and η = ρv is a finite signed measure in
M(R) with

R
R |v(x)|2 dρ(x) < +∞.

We can introduce a semi-distance U2 in V2(R):

U2
2 (µ1, µ2) :=

Z
R

˛̨
v1(Xρ1(w))− v2(Xρ2(w))

˛̨2
dw =

‚‚v1 ◦Xρ1 − v
2 ◦Xρ2

‚‚2

L2(0,1)

and a distance D2

D2
2(µ1, µ2) :=W 2

2 (ρ1, ρ2) + U2
2 (µ1, µ2).

Theorem (Ambrosio-Gigli-S. ’05)

(V2(R), D2) is a metric (but not complete) space whose topology is stronger
than the one induced by the weak convergence of measures.
The collection Vdiscr(R) of all the discrete measures
µ =

`PN
i=1miδxi ,

PN
i=1miviδxi

´
is a dense subset of V2(R).

A sequence µn = (ρn, ρnvn) converges to µ = (ρ, ρv) in V2(R) if and only if

W2(ρn, ρ)→ 0, ρnvn ⇀ ρv weakly in M(R),

Z
R
|vn|2 dρn →

Z
R
|v|2 dρ.
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The fundamental estimate

Let Vdiscr(R) the collection of all the discrete measures in V2(R) and let us
denote by St : Vdiscr(R)→ Vdiscr(R) the map associating to any discrete
initial datum (ρ0, ρ0v0) ∈ Vdiscr the solution (ρt, ρtvt) of the (discrete)
sticky-particle system. St is a semigroup in Vdiscr(R).
For µ ∈ V2(R) we set

[µ]22 :=

Z
R

“
|x|2 + |v(x)|2

”
dρ(x) = D2

2(µ, (δ0, 0)).

Theorem (Stability with respect to the initial data)

Let µ`t = (ρ`t, ρ
`
tv
`
t) = St[µ

`
0], ` = 1, 2, be the solutions of the (discrete)

sticky-particle system with initial data µ`0 ∈ Vdiscr(R).

W2(ρ1
t , ρ

2
t ) ≤W2(ρ1

0, ρ
2
0) + tU2(µ1

0, µ
2
0),Z t

0

U2
2 (µ1

r, µ
2
r) dr ≤ C(1 + t)

“
[µ1]2 + [µ2]2

”“
W2(ρ1

0, ρ
2
0) + U2(µ1

0, µ
2
0)
”
,

for a suitable “universal” constant C independent of t and the data.
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Evolution semigroup

Theorem (The evolution semigroup in V2(R))

I The semigroup St can be uniquely extended by density to a
right-continuous semigroup (still denoted St) of strongly-weakly
continuous transformations in V2(R), thus satisfying

Ss+t[µ] = Ss[St[µ]] ∀ s, t ≥ 0, lim
t↓0

D2(St[µ], µ) = 0. (2)

St complies with the same discrete stability estimates of the previous
Theorem.

I (ρt, ρtvt) = St[µ], µ ∈ V2(R), is a distributional solution of Euler
system satisfying Oleinik entropy condition.

I If ψ : R→ R is a convex function such that ψ(v0) ∈ L1
ρ0(R), and

(ρt, ρtvt) = St[µ0], then

the map t 7→
Z

R
ψ(vt) dρt(x) is nonincreasing in [0,+∞). (3)

and its jump set is contained in an at most countable set
J(µ) ⊂ (0,+∞) independent of ψ.
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A gradient flow formulation in P2(R)

The semigroup St can also be characterized by the (metric) gradient
flow Gτ (introduced in [Ambrosio-Gigli-S. ’05]) of the (−1)-geodesically
convex functional

Φ(ρ) := −1

2
W 2

2 (ρ, ρ0)

in P2(R).
ρ̂τ = Gτ (ρ) is a semigroup in P2(R) which can be characterized by the
family of Evolution Variational Inequalities

1

2

d

dτ
W 2

2 (ρ̂τ , σ)− 1

2
W 2

2 (ρ̂τ , σ) ≤ Φ(σ)− Φ(ρ̂τ ) for every σ ∈ P2(R).

Theorem (The gradient flow of the opposite Wasserstein distance)

If µt = (ρt, ρtvt) = St(ρ0, ρ0v0) is a solution of SPS then the rescaling
τ = log t, µ̂τ = µt, ρ̂τ = ρt satisfy

ρ̂τ+δ = Gδ(ρ̂τ ) or, equivalently ρt eδ = Gδ(ρt).
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The L2-projection on K

Theorem

If X ∈ L2(0, 1) and X (w) =
R w
0
X(s) ds is its primitive then

PK(X) =
d

dw
X ∗∗

where X ∗∗ is the convex envelope of X .
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The subdifferential of IK
If X ∈ K we consider the open set ΩX where X is (essentially) constant:

ΩX :=
˘
w ∈ (0, 1) : X is essentially constant in a neighborhood of w

¯
,

and the cone

NX :=
˘
Y ∈ C0([0, 1]) : Y ≥ 0, Y = 0 in [0, 1] \ ΩX

¯
.

Theorem

Let X ∈ K and Y ∈ L2(0, 1) with Y (w) :=
R w
0
Y (s) ds. Then

Y ∈ ∂IK(X) ⇔ Y ∈ NX .

Notice that if Z = f(X) ∈ HX depends on X then

ΩZ ⊂ ΩZ , NZ ⊂ NZ

Corollary (Monotonicity property of ∂IK)

If Z = f(X) ∈ HX depends on X then

∂IK(X) ⊂ ∂IK(Z).
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Order reduction for differential inclusions
Differential equation for the collision free motion in Lagrangian coordinates:

d2

dt2
Xt = 0

“Formal” differential inclusion for the SPS:

d2

dt2
Xt ∈ −∂IK(Xt) i.e.

»
d

dt
Xt

–
t=th

= Vth+ − Vth− ∈ −∂IK(Xt). (?)

Sticky condition:

s < t ⇒ Xt ∈ HXs i.e. Xt “depends on” Xs.

By the monotonicity property of ∂IK we have

∂IK(Xs) ⊂ ∂IK(Xt)

We can then integrate (?) with respect to time from 0 to a final time t:

d

dt
Xt − V0 ∈ −∂IK(Xt) since

Z t

0

∂IK(Xs) ds ∈ ∂IK(Xt). (??)

Integrating again we get

Xt −X0 − tV0 ∈ −∂IK(Xt) i.e. Xt = PK(X0 + tV0) (? ? ?)
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Extensions and open problems

Extensions:

I L2  Lp, p ≥ 2;

I (in collaboration with W. Gangbo and M. Westdickenberg)
Adding a force induced by a potential V(

∂tρ+ ∂x(ρ v) = 0,

∂t(ρ v) + ∂x(ρ v2) = −ρ ∂xV .

I Adding a force induced by a smooth interaction potential8<: ∂tρ+ ∂x(ρ v) = 0,

∂t(ρ v) + ∂x(ρ v2) = −ρ
`
ρ ∗ ∂xW

´
I Adding a force induced by a non-smooth interaction potential, e.g. the

Euler-Poisson system when W (x) = ±|x|.
Open problems:

I The SPS in the multidimensional case.

I The displacement-extrapolation problem.
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