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Sticky particles

Starting point: motion of a finite number of particles.

Discrete particle model

Nparticles P = (mi,xi,vi), izl,...,N,
with positive mass m; satisfying Zf\;l m; =1
ordered positions 1 < 22 < ... < xn-1 < TN,
and velocities v;.

At the initial time ¢ = 0 the particles are disjoint and start to move freely
with constant velocity:

zi(t) :== z;(0) + v;: (0)¢, v;(t) := v;.
The first collision time t = ¢! correspond to
z;i(t") =z; 1 (t") = ... = 2(t") for some indices j < k.

The particles P;, Pjt1,..., P, collapse in a new particle P
with mass m :=m; + ...+ my and

mv;(th) + mypo4a (8Y) + . myo ()
m

After the collision the particles P, ..., Py stick in the same big particle
P which freely moves with fixed velocity v up to the next collision ¢. =

“barycentric” velocity v :=

A



Sticky particles
Measure-theoretic description

We thus have:

a (finite) sequence of collision times 0 < t' <t? < ...

in each interval [t",¢"*1) a finite number N" of (suitably relabelled)
particles Pi(t),--- , Pyn(t), Pi(t) := (mq, x:(t), vi(t)).

We can introduce the measures

NP Nh
pri=Y mida,) €PR) (pv)e:= D mivida,uy € M(R) if t € [t",£").
i=1 i=1

They satisfy the 1-dimensional pressureless Euler system in the sense
of distributions

Op + 9z(pv) =0,
d(pv) + 0z (pv*) = 0,

in R x (0, +00); Pli—o = PO, V|y_g = VO,

and the OLEINIK entropy condition

ve(x2) —ve(z1) < (22 —x1) for peae. 1,22 € R, z1 < xa.
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Sticky particles

Main problem: continuous limit

Consider a sequence of discrete initial data ug := (pg, povg ) converging to
1o = (po, povo) in a suitable measure-theoretic sense and let
ut = (pt, pror) be the (discrete) solution of SPS.

Problem

> Prove that the limit puy = (pt, prvt) of the SPS ui = (p¢, prvy) as
n T 400 exists.

> Find a suitable characterization of u:

> Show that (pt, prve) solves the pressureless Euler system

Orp + 92(pv) =0,
Bi(pv) + Bu(pv*) =0,

in R x (0,400);  p|,_, =Po, V|,_o = 0,

and satisfy Oleinik entropy condition.




Sticky particles

Main contributions

e Existence and convergence:
> GRENIER '95, E-RYKOV-SINAI ’96: first existence and convergence result.
> BRENIER-GRENIER ’96: Characterization of the limit in terms of a
suitable scalar conservation law, uniqueness.
» HUANG-WANG 01, NGUYEN-TUDORASCU ’08, MOUTSINGA ’'08: further
refinements.

Basic assumptions:
P8 — po in the L?-Wasserstein distance,
vy = v is given by a continuous function with (at most) linear growth.

In particular the result cover the case when pg, po have a common
compact support and py — po weakly in the sense of distribution (or,
equivalently, in the duality with continuous functions).

e Pioneering ideas which lies (more or less explicitly) at the core of the
papers by E-RYKOV-SINAT and BRENIER-GRENIER have been
introduced by

> SHNIRELMAN ’86 and further clarified by
> ANDRIEVWSKY-GURBATOV-SOBOELVSKII ‘07 in a formal way.
e Different approaches and models:

> BoucHUT-JAMES ’95, POUPAUD-RASCLE 97
> SOBOLEVSKII '97, BOUDIN ’00: viscous regularization.
> WOLANSKY ’07: particles with finite size.




Sticky particles

The Brenier-Grenier formulation

For every probability measure p € P(R) we introduce the cumulative
distribution function

My(z) :=p((—00,2]), x€R, sothat p=0.M, in Z'(R).

Main idea: study the evolution of M; := M,,, where p; is the solution of
the SPS.

Theorem (Brenier-Grenier ’96)

M 1is the unique entropy solution of the scalar conservation law
M + 9, A(M) =0 4n R x (0,+00)

where A : [0,1] — R is a continuous flux function depending only on the
initial data po and vo. It is characterized by

A'(My(z)) = vo(z).




Lagrangian representation

Monotone rearrangement

Point of view of 1-dimensional optimal transport: instead of using
the cumulative distribution function M,(z) = p((—o0, z]), we

represent each probability measure p by its monotone rearrangement
X,:(0,1) = R

X,(w) := inf {x ER: My(z) > w} w € (0,1)

which is the so-called pseudo-inverse of M.

The map X, is nondecreasing and right-continuous.
It pushes the Lebesgue measure A := ,,2”1‘(0 3 on (0,1) onto p, i.e.

(XP)#$1|(0,1) = p, ZI(X;I(B)) = p(B) for every Borel set B C R J

It satisfies the change of variable formula

[ #@)dse /¢

for every nonnegative/bounded Borel function ¢ : R — R. In particular,

o= [l apw) = [P du = 165,
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Lagrangian representation

Wasserstein distance and the L? isometry

The map p — X, is a one-to-one correspondence between

the space P2(R) of probability measures with finite quadratic moment
ma(p) = fi [2]? dp(z) < +oo

and

the closed convex cone X of all the nondecreasing function in L?(0,1)
(among which we can always choose the right-continuous representative).

2 . .
L“-Wasserstein distance

Wa(p', p?) between p*, p> € Pa(R):

1
W22(01702) = /0 |Xp1 (w) — sz(w)‘2 dw = ”Xp1 - Xp2H2L2(o,1)

In this way p < X, is an isometry between (P2(R), W) and
(3 11 llz2g0,1)-
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Lagrangian representation

A description of the evolution by the L?-projection on K

We denote by Px (Y) the L? projection of Y € L?(0,1) on X, i.e.
X=Px(Y) & [Y—-X|[=min{|]Y-Z]:ZeX}

To the (discrete) data p: = (pi, prv+) we associate the functions
(X, Vi) € X x L*(0,1) by

Xt =Xp,, Vii=v0Xy.

Notice that the second component of (X, V%) do not span the whole space
L?(R) in general, but it is contained in the closed subspace

Hx, := {V = v o X; for some Borel map v € Lit (R)}

Theorem (First Lagrangian representation)

A family p: = (pt, prve) is a solution of the (discrete) SPS if and only if

X = PSC(XO —|—tV0)~




Lagrangian representation

Stability properties (I)
Let X; := Xo + ¢Vo be associated to the measures

N
pe = (Xt)#jlho,l) = ;miézi“rfvi

corresponding to the “collision free” motion, when the particles do
not see each other.

Thus the solution X; can be computed by “projecting” the Lagrangian free
motion Xt on X.

Since the projection operator Py is a contraction in L?(0,1), the
representation formula

X: = Py (Xo + tVo) = Py (Xt)

easily yields

If X}, X? are the Lagrangian representation of two (discrete) solutions
pi, p2 of the SPS we have

Hth - XtQHLQ(O,l) < ||Xt% - X§||L2(O,1) + t”Vol - V02HL2(0,1)-



Lagrangian representation

The polar cone and the subdifferential of the indicator
function of K
The polar cone X° is defined by

YeX® & (Y|Z2)<0 forevery ZeX

I is the indicator (convex, lower semicontinuous) function of X in L2(0, 1)

Toe (X) = 0 if X € X,
* I RS otherwise,

with subdifferential dly : L?(0,1) — L% (01

E € 0Ix (X) if and only if X € K and one of the following equivalent
conditions holds

(ElZ-X) <0 forevery Z € X,
Ee€X® and (E|X)=0,

Px(X +E) = X.




Lagrangian representation

Differential inclusion (I)

Recall that to the (discrete) data pu¢ = (p¢, ptve) we associate the functions
(X:,V2) € X x L*(0,1) by

Theorem (Second Lagrangian representation)

A family pe = (pt, prve) is a solution of the (discrete) SPS if and only if X
is the unique strong solution of the differential inclusion

d .
aXz S *an{(Xt) + Vo, ltllIIOlXt = Xo.
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Lagrangian representation

Stability properties (II)
By general results on solution of differential inclusion of the type
X{ € —0¢(X:) + Fi, ¢ convex,

X is right-differentiable in each point and the velocity field v; can be
recovered by the formula
d+

W:EXt:UtOXtej{Xt.

One gets [S. ’96] the following integral estimate for the velocity component:

Corollary

If X}, X2 are the Lagrangian representation of two (discrete) solutions
pt, p? of the SPS, their velocities Vi = %Xf satisfy

t
/0 V2=V 320, dr < CO+) (31X I+ (1% =X3 1+ 1Ve = Ve l)-
£

Moreover, if ¥ : R — R is convex then the map

1
t— (Vi) = / Y(Vi(w))dw is non increasing in [0, +00).
0

16




Lagrangian representation

Further references: scalar conservation laws, L?>-theory and
Wasserstein distance

» The link between the
BRENIER-GRENIER formulation based on the scalar conservation law

OiM + 9, A(M) =0

and the
Hilbertian theory of gradient flows like %Xt € —Olx(Xe)+ Vo
is not at all surprising, after the illuminating recent paper

BRENIER ’09: L2—formulation of multidimensional scalar
conservation laws

whose ideas, in particular concerning the SPS, could be traced back to
other papers by BRENIER in 2004-2005.

» Wasserstein contraction properties of solutions of one—dimensional
scalar conservation laws have also been recently obtained by
BOLLEY-BRENIER-LOEPER "05
and further developed by CARRILLO-D1 FRANCESCO-LATTANZIO 06



Lagrangian representation

Differential inclusion (IT)

Recall that to the (discrete) data u: = (p¢, prv:) we associate the functions
(X, Vz) € X x L?(0,1) by

Theorem (Third Lagrangian representation)

A family pe = (pe, prve) s a solution of the (discrete) SPS if and only if X
is the unique strong solution of the differential inclusion
X: — Xo

d . B
taXt E —8Ij<(Xt) + X — X(), ltlf{)l f = V.

Up to the rescaling 7 = logt, X, = X, the equation is equivalent to

d ~ N N
— X, € =0y (X- X — Xo;
dr € aJC( )Jr 0

it is the gradient flow in L?(0,1) of the functional
1
O(X) =T (X) = 5| X = Xo||*

which is (—1)-convex.



Measures

A metric space for the measure-momentum couples (p, pv)
We consider the space of couples (p, pv), with p € P2(R) and v € L2(R):

Vy(R) := {u = (p,pv) C P2(R) x M(R) : v € Li(R)}.

thus p is a probability measure and 1 = pv is a finite signed measure in
M(R) with [, [v(z)]* dp(z) < +oc.
We can introduce a semi-distance Uz in V2(R):

2 2
Ug(u17u2) ::/ |v1(X,,1 (w)) — v2(Xp2(w))| dw = Hv1 o X, — v? o szHsz!l)
R
and a distance D»

Di(pt,p®) =W (p', p%) + U (1", ).

Theorem (Ambrosio-Gigli-S. ’05)

(V2(R), D2) is a metric (but not complete) space whose topology is stronger
than the one induced by the weak convergence of measures.

The collection Yaiser(R) of all the discrete measures

nw= (Eil mi(ixi,ZiV:l miviéwi) is a dense subset of Va(R).

A sequence pin = (pn, prnvn) converges to = (p, pv) in V2(R) if and only if

Wa(pnsp) =0, putm — pv weakly in M(R), / [onl? dpn — / o] dp.
R R
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Measures

The fundamental estimate

Let Ygiser (R) the collection of all the discrete measures in V2 (R) and let us
denote by 7% : Yaiser (R) — Yaiser (R) the map associating to any discrete
initial datum (po, povo) € Yaiser the solution (p¢, prve) of the (discrete)
sticky-particle system. .7} is a semigroup in Ygiser(R).

For p € Va(R) we set

= [ (I + 0@ ) dote) = DR, (50,0)).

Theorem (Stability with respect to the initial data)

Let pf = (pf, piof) = Flud], £ = 1,2, be the solutions of the (discrete)
sticky-particle system with initial data p§ € Yaiser(R).

Wa(pi, pi) < Wa(po, p3) + tUz(pig, 1),

/ B, 2) dr < OO ) (s + 712 (Wb, ) + U ),

for a suitable “universal” constant C' independent of t and the data.

21



Measures

Evolution semigroup

Theorem (The evolution semigroup in 72 (R))

> The semigroup % can be uniquely extended by density to a
right-continuous semigroup (still denoted #;) of strongly-weakly
continuous transformations in ¥2(R), thus satisfying

Fortlp] = L[Alu]] V5,620, lmDa(HAlu],p) =0. (2)

% complies with the same discrete stability estimates of the previous
Theorem.

> (pe, peve) = S[pl, p € ¥2(R), is a distributional solution of Fuler
system satisfying Oleinik entropy condition.

» If¢: R — R is a convez function such that 1(vo) € L) (R), and
(pt, prve) = Fi[po], then

the map t+— / P(ve) dpe(x)  is nonincreasing in [0, +00). (3)
R

and its jump set is contained in an at most countable set
J(u) C (0,+00) independent of 1.

29



Measures

A gradient flow formulation in P3(R)

The semigroup .%; can also be characterized by the (metric) gradient
flow ¢ (introduced in [AMBROSIO-GIGLI-S. ’05]) of the (—1)-geodesically
convex functional

D(p) i= ~ 3 WE(p, po)

in ?2 (]R)
pr =% (p) is a semigroup in P2(R) which can be characterized by the
family of Evolution Variational Inequalities

1d .
77W22(p7'70-) -

53 lW22(/6T,U) < P(o) — D(p,) for every o € P2(R).
pu

2

Theorem (The gradient flow of the opposite Wasserstein distance)

If e = (pt, prvr) = F4(po, povo) is a solution of SPS then the rescaling
7 =logt, fir = pt, pr = pr satisfy

Prto = Ys5(p-) or, equivalently p,.s = YG5(pt).




Tools of convex analysis

The L?*-projection on X

If X € L?(0,1) and Z (w) = Jy) X (s)ds is its primitive then

d *k

where " is the convex envelope of X .

oK



The subdifferential of Iy

If X € X we consider the open set Qx where X is (essentially) constant:
Qx := {w € (0,1) : X is essentially constant in a neighborhood of w},
and the cone

Ny ={#eC’([0,1)): % >0, #=0in[0,1]\Qx}.

Let X € X and Y € L*(0,1) with % (w) := [, Y(s)ds. Then

YG@IJ{(X) = % € Nx.

Notice that if Z = f(X) € Hx depends on X then
Qz CQz, Nz CNg

Corollary (Monotonicity property of dlsx)

If Z = f(X) € Hx depends on X then

Al (X) C Olx (2).




Tools of convex analysis

Order reduction for differential inclusions
Differential equation for the collision free motion in Lagrangian coordinates:

d2
ap =0
“Formal” differential inclusion for the SPS:
d? . d
EXt € —0lx (Xt) 1.e. |:&Xt:| - = ‘/th,+ — ‘/th,_ S —alg((Xt). (*)

Sticky condition:
s<t = XieHx, ie X; “dependson” X;.

By the monotonicity property of dlx we have

Alsc (Xs) C Ol (Xo) J

We can then integrate (x) with respect to time from 0 to a final time ¢:

¢
%Xt — Vo € =0l (Xy) | since / Olx (X)) ds € 9lx (Xy). (x)
0

Integrating again we get

Xt — Xo —tVo € —0Ix(X¢) iee. ‘Xt = Py (Xo +tWo) ‘ (% 5 *)

o7



Tools of convex analysis

Extensions and open problems

Extensions:
> L2~ LP, p > 2

> (in collaboration with W. GANGBO AND M. WESTDICKENBERG)
Adding a force induced by a potential V'

{ Oep + 9z(pv) =0,

di(pv) + 8. (pv?) :.

» Adding a force induced by a smooth interaction potential
Oep + 9z(pv) =0,
D (pv) + 0u(pv?) =|—p (p * W)

» Adding a force induced by a non-smooth interaction potential, e.g. the
Euler-Poisson system when W(z) = +|z|.

Open problems:
» The SPS in the multidimensional case.

» The displacement-extrapolation problem.
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