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Introduction to Nonlinear Elasticity

A deformation of a body Ω ⊂ R3 is described by a map

u : Ω→ R3.

Elastic energy =

∫
Ω

W (Du(x)) dx

where W : R3×3 → [0,∞] is the stored energy function of the

material.

An equilibrium solution u (Statics) is a solution of

min
u∈W 1,p

bc

∫
Ω

W (Du(x)) dx + forces.



Apart from solving a minimization problem, every physically

realistic solution u must:

• preserve the orientation: det Du > 0,

• be one-to-one (no interpenetration of matter).

Typically, W : R3×3 → [0,∞] satisfies W (F) =∞ whenever

det F ≤ 0.

=⇒ W cannot be convex.



Existence in Nonlinear Elasticity (J.M. Ball 1977)

Theorem.

W polyconvex, i.e., W (F) = W1(F, cof F, det F) with W1 convex,

W (F) ≥ c1 (|F|p + | cof F|q + | det F|r )− c2

with p ≥ 2, q ≥ p
p−1 , r > 1. Dirichlet boundary conditions. Then

there exists a minimizer of
∫

Ω W (Du) dx.

Key of the proof:

uj
W 1,p

⇀ u =⇒ cof Duj
Lq

⇀ cof Du and det Duj
Lr

⇀ det Du.

Refinements by Ball & Murat 84, Ciarlet & Nečas 87, Šverák 88,

Giaquinta, Modica & Souček 89, Müller 89, 90,

Müller, Tang & Yan 94. . .

All in function spaces that don’t allow cavitation.



What is cavitation?

It is the process of sudden formation of voids in solids subject to

sufficiently large tension. It is typical in rubbers, but some metals

undergo cavitation too.

Cavitation in rubber (A.N. Gent & P.B. Lindley 1959)



Experiments in metals suggest that ductile fracture is preceded by

cavitation.

Cavitation and fracture in a Titanium alloy (N. Petrinic et al. 06)



The easiest cavitation is the radial: u(x) := r(|x|) x
|x| .

u

This deformation opens a hole at 0 of radius r(0).

It satisfies u ∈W 1,p for all p < 3, and cof Du ∈ Lq for all q < 3
2 .

 not covered by the existence theorems in Elasticity.

J.M. Ball & F. Murat 84 showed that if cavitation is allowed then

uj
W 1,p

⇀ u 6=⇒ det Duj
L1

⇀ det Du.



The model of S. Müller & S.J. Spector 1995 for cavitation

They added to the elastic energy a surface energy (= energy due

to cavitation):

Energy =

∫
Ω

W (Du) dx + Per(u(Ω)).

This can be minimized in the class{
u ∈W 1,p : det Du > 0, u is one-to-one a.e. and satisfies (INV)

}
.

(INV) is a topological condition related to injectivity.



We would like to improve Müller-Spector’s model:

I Definition of created surface. The surface energy should

measure only the created surface, excluding the existing one.

I Allow for fracture too. Condition (INV) is incompatible with

fracture.



Model for brittle fracture

(L. Ambrosio & A. Braides 95, G.A. Francfort & J.J. Marigo 98)∫
Ω

W (∇u) dx +H2(Ju)

Ju = set of jumps of u.

Existence in SBV guaranteed by Ambrosio 90 compactness theorem.

Condition (INV) is incompatible with SBV .

Need a new functional space and a new surface energy that detects

both cavitation and fracture.



Cavitation and fracture are singularities of a different kind:

I Cavitation: the image of a point is a surface.

I Fracture: the image of a surface is a surface in a one-to-two

way.

But they have something in common: both create surface.



Müller & Spector 95: example of ‘invisible’ created surface.

Definition:

Invisible surface ΓI (u): the set of jump discontinuity points of

u−1 : u(Ω)→ Ω with density 1 in u(Ω).

Visible surface ΓV (u): the set of jump discontinuity points of

u−1χu(Ω) : R3 → Ω ∪ {0} with density 1
2 in u(Ω) and preimage in

Ω.



Per(u(Ω)) = sup
‖g‖∞≤1

∫
u(Ω)

div g(y) dy.

New surface energy: E(u) := sup
‖f‖∞≤1

∫
u(Ω)

div f(u−1(y), y) dy.

Theorem: E(u) = H2(ΓV (u)) + 2H2(ΓI (u)).



Weak continuity of the determinant.

Preservation of injectivity under limit.

Theorem. If

uj → u a.e., cof∇uj ⇀ cof∇u in L1, sup
j
E(uj) <∞,

then det∇uj ⇀ det∇u in L1.

(Improvement of M. Giaquinta, G. Modica & J. Souček 98.)

If, in addition, uj is one-to-one a.e. and det∇uj > 0 a.e.

then u is one-to-one a.e.

(Improvement of Ph.G. Ciarlet & J. Nečas 87,

A. Giacomini & M. Ponsiglione 08).



Regularity of inverses.

Using ideas of Ambrosio 95 we can prove that

u ∈ BV , E(u) <∞ =⇒ u−1χu(B) ∈ SBVloc for a.e. ball B

Related regularity results by S. Hencl, P. Koskela, J. Onninen, J. Malý,

M. Csörnyei. . . 2006–08.

The functional E is a known object in the theory of Cartesian

currents (M. Giaquinta, G. Modica & J. Souček 98):

E(u) = M((Gu)2).



Existence theory for cavitation and fracture.

Theorem (only cavitation).

p ≥ 2, r > 1, W polyconvex,

W (F) ≥ c1 (|F|p + | cof F|r + | det F|r )− c2.

Then

∫
Ω

W (Du) dx + E(u) has a minimizer in

{
u ∈W 1,p : det Du > 0, u one-to-one a.e., Dirichlet

}
.

Theorem (cavitation and fracture).

p, r ,W as above.

Then

∫
Ω

W (∇u) dx + E(u) +H2(Ju) has a minimizer in

{u ∈ SBV : ∇u ∈ Lp, det∇u > 0, u one-to-one a.e., Dirichlet} .


