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Motivation

I The question arose from talks with G. Leugering and J.P. Puel:
Can the optimal transportation theory and the controllability be
mixed ?

I Natural underlying question: can one prescribe the motion of (some)
fluid particles ?

I Can one prescribe the motion of a set of fluid particles ?



Motivation

I Possible applications:
Treatment of pollution: when a pollutant can be considered as a fluid.
Displacement of species (animal, plant, alga, mermaids).



Formulation

I Given an open bounded set Ω ⊂ RN, T > 0.
Two Jordan domains γ0 and γ1 included in Ω.
The two domains surrounded by γ0 and γ1 satisfy:

|int(γ0)| = |int(γ1)|.
Let Γ ⊂ ∂Ω.
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Formulation

I Let u0 : Ω→ R2.
Consider u : (0,T) ×Ω → R2 and p : (0,T) ×Ω → R satisfying the Euler
system (E)

(E)

(1)
∂u
∂t
+ (u.∇)u + ∇p = 0, t > 0 x ∈ Ω

(2) u(t = 0, x) = u0(x)

(3) u.n = 0, on (0,T) × ∂Ω \ Γ

(4) div(u) = 0



Formulation

I The system (E) is well posed if one imposes, for example,

(5)
{

u.n on (0,T) × Γ,
∫
∂Ω

u.ndσ = 0
curlu on each point of ∂Ω such that u.n < 0



Formulation

I Definition: One says that there is (exact) Lagrangian controllability (resp.
approx. Lagrang. controll. in norm || · ||) between γ0 and γ1 in time T if
(resp. ∀ε > 0) one can find u solution of (E) such that the flow ϕu of u
defined by

∂ϕu

∂t
(s, t, x) = u(t, ϕu(s, t, x))

ϕu(s, s, x) = x

satisfies
ϕu(0,T, γ0) = γ1.

respectively
||ϕu(0,T, γ0) − γ1|| < ε,

up to a reparameterization.



Results

The idea of moving fluid particles in controllability amounts to JM.
Coron,. O. Glass ,.. to show the controllability in the Eulerian descrip-
tion.
In fact the Coron’s method gives the exact lagrangian controllability but
by allowing the fluid particles to be controlled to leave the domain Ω.
Here we will impose that controlled particles remain in the domain.
L. Rosier studied the controllability of the surface of a 1-d fluid in La-
grangian description.
Recent works of A. Agrachev are linked to the Lagrangian controllability.
Controllability or inverse problems in fluid-structure interactions, Imanuvilov-
Takahashi, Cumsille-Ortega-Rosier, Conca-Kavian & al.....
Burgers and heat equation in 1d, heat equation in N-d.



Results

I We have the following results: (everything is now in 2-d)
Theorem 1: Assume that u0 ∈ C∞(Ω,R2), u0.n = 0 on ∂Ω\Γ, div(u0) = 0 in
Ω, that γ0 and γ1 are C∞, that γ0 andγ1 surround surfaces of same areas
and are homotopic in Ω, and that Ω is connected. For all k ∈ N there
is approximate controllability between γ0 and γ1 in time T and in norm
Ck(S1). Moreover ∀t ∈ [0,T], ϕu(0, t, γ0) ⊂ Ω.



Results

I We have the following results: (everything is now in 2-d)
Theorem 1: Assume that u0 ∈ C∞(Ω,R2), u0.n = 0 on ∂Ω\Γ, div(u0) = 0 in
Ω, that γ0 and γ1 are C∞, that γ0 andγ1 surround surfaces of same areas
and are homotopic in Ω, and that Ω is connected. For all k ∈ N there
is approximate controllability between γ0 and γ1 in time T and in norm
Ck(S1). Moreover ∀t ∈ [0,T], ϕu(0, t, γ0) ⊂ Ω.

I Remark 1: If one assumes that curlu0 = 0 in a neighborhood of γ0, since
the vorticity (curlu) is moved by the flow of the given solution of (E) it
remains null in a neighborhood of ϕu(0, t, γ0) for all t ∈ [0,T]. Therefore
if γ0 is a real analytic (Jordan) curve, the same holds for ϕu(0, t, γ0),∀t. So
as long as one imposes ∀t ∈ [0,T], ϕu(0, t, γ0) ⊂ Ω there cannot be exact
lagrangian controllability (it suffices to take γ1 nonanalytic).

(
∂ω
∂t
+ (u.∇)ω = 0, with ω := curlu.)



Results

I Remark 2: Contrary to the works on the controllability of (E) in Eulerian
description (where the state is the velocity) [Coron] [Glass],...., one may
control not on all connected components of ∂Ω.



Results

I Remark 2: Contrary to the works on the controllability of (E) in Eulerian
description (where the state is the velocity) [Coron] [Glass],...., one may
control not on all connected components of ∂Ω.

I Remark 3: The solution of (E) that we build is C∞:-> its flow is well
defined. All the fluid surrounded by γ0 is approximatively sent inside
Int(γ1). As long as one considers regular controls, the situation will be
the same. If γ0 and γ1 are not homotopic in Ω the situation is not clear
since the flow has to be a weak flow that does not preserve the topol-
ogy.



Results

I Wolibner, Yudovich, Chemin, Depauw, Dutrifoy.... have studied vortex
patches, i.e. solutions that satisfy

curlu(t, x) = χInt(γ)(t, x)

divu = 0 in Ω

u.n = 0 on ∂Ω \ Γ

(5bis)
{ u.n given on Γ

curlu=0 on Γ
⋂
{u.n<0}

This problem is well-posed and if γ0 is C∞ then so is for γ(t) for all t.
We then have the following result:



Results

I Theorem 2: If γ0 and γ1 are C∞, and if u0 is lipschitz on Ω and u0.n ∈
C∞(∂Ω) with 

curl(u0) = χInt(γ0)

divu0 = 0 in Ω
u0.n = 0 on ∂Ω \ Γ.

there exists then ∀ε > 0 u ∈ L∞([0,T],Lip(Ω)) satisfying (1) (2) (3) (4)
(5bis) whose flow ϕu satisfies ϕu(0, t, γ0) ⊂ Ω and

||ϕu(0,T, γ0) − γ1||Ck < ε.



Results

I The cornerstone for proving theorems 1 and 2 is constituted of the fol-
lowing result :



Results

I The cornerstone for proving theorems 1 and 2 is constituted of the fol-
lowing result :

I Theorem 3: Let γ0 and γ1 be as in theorem 1 and ε > 0, there exists
θ ∈ C∞0 ([0, 1]; C∞(Ω,R)), such that

− ∆xθ = 0 in Ω for all t ∈ [0, 1]
∂θ
∂n
= 0 on [0, 1] × (∂Ω \ Γ)

||ϕ∇θ(0, 1, γ0) − γ1||Ck ≤ ε,

that is to say we can do the job by potential flows.
This idea has been extensively used by Coron, and later by Glass in the

Eulerian controllability of (E).



Results

I To prove theorem 3, we prove the following results:
Theorem 4: Let γ0 and γ1 be two jordan curves of class C∞ homotopic inΩ
and which enclose surfaces of same area, there exists v ∈ C∞0 ((0, 1)×Ω; R2)
with div(v) = 0 such that ϕv(0, 1, γ0) = γ1.

Proposition 1: If γ is a C∞ Jordan curve and X a C0([0, 1],C∞(Ω)) di-
vergence free vector field with X.n = 0 on [0, 1] × ∂Ω. Let us define
γ1 = ϕX(0, 1, γ0) there exists for all ε > 0 a θ ∈ C∞([0, 1] × Ω,R) har-
monic in space with null normal derivative on (∂Ω \ Γ), ϕ∇θ(0, t, γ0) ⊂ Ω
and ||γ1 − ϕ∇θ(0, 1, γ0)||k ≤ ε.



Ideas of the proofs



I Proposition 1. One first assume that X and γ0 are real analytic:
Let γ(t) := ϕX(0, t, γ0). One can solve

∆xψ(t, x) = 0 in Int(γ(t)) ∩Ω ( or Ω \ Int(γ(t)) if Γ ∩ Int(γ(t)) 6= ∅)
∂ψ
∂ν
= X.ν on γ(t), (ν denotes the normal)

∂ψ
∂n = 0 on Int(γ(t)) ∩ ∂Ω

and extend ψ to a harmonic mappings on a neighborhood of Int(γ(t))
(for simplicty we assume Int(γ(t)) ∩ ∂Ω = ∅) thanks to the Cauchy-
Kowalewski’s theorem (precisely a version of C.B. Morrey) and by com-
pactness one can take this neighborhood locally constant in time, and
besides we get uniform bounds in time on these neighborhoods.

I By the Runge’s theorem (and the correspondance between gradient of
harmonic maps and holomorphic functions with zero circulation) one ex-
tends (not exactly but approximately) ψ on this neighborhood and 0 on
a neighborhood of ∂Ω \ Γ to a harmonic map θ (that we slightly correct)
onΩ and we get uniform bounds in time on a neighborhood of γ(t). One
concludes with the Gronwall’s lemma.



Ideas of the proofs

I We get estimates of the form
||ϕ∇θ(0, t, γ0)−ϕ∇ψ(0, t, γ0)||k ≤∼ ||∇θ−∇ψ||C0,Ck(V(γ(t))) exp(||∇ψ||L∞,Wk+1,∞(V(γ(t)))
and

||∇θ(t, .)||Ck(int(ϕ∇θ(0,t,γ0)) ≤ ||∇ψ(t, .)||Ck(int(ϕX(0,t,γ0)) + 1



Ideas of the proofs

I When γ0 is only C∞: the complement Int(γ0) in the Riemann sphere is
connected and simply connected:
T : S2

\ Int(γ0) → D2 conformal and C∞ up to the boundary: One takes
γ
µ
0 = T−1(S1

1−µ). We proceed as before and thanks to the fact that T is
smooth up to the boundary (Kellogs-Warschawski’s theorem) one shows
that the ψµ are bounded uniformly in t and µ on int(ϕX(t, 0, γ0)).

I Lastly when X and γ are only C∞: One writes X = ∇⊥h (for X is di-
vergence free) and one approaches h by a hµ (uniformly in t) which is
analytic thanks to the Whitney’s theorem and one corrects the boundary
condition Xµ.n 6= 0 but small on ∂Ω by the gradient of a harmonic func-
tion.



Ideas of the proofs

I Theorem 4. One starts by assuming that γ0 and γ1 intersect transversally:
Let P ∈ γ0 and Q ∈ Int(γ1) one choose a curve t → s(t) in Ω such that
s(0) = P and s(1) = Q.
One chooses h(t, x) such that ∇⊥h(t, x) = s′(t) along s(t) and we extend h
arbitrarily [0, 1] × Ω. ∇⊥h is divergence free and its flow maps γ0 on a
curve that intersects γ1 which we now denote γ0. By the Thom’s trans-
versality theorem one may choose r ∈ R2 such that γ0 + r intersects γ1

transversally and is included in Ω.



Ideas of the proofs

I We arrive to different type of situations described below

Figure 3



Ideas of the proofs

I

Figure 4
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I

Figure 5



Ideas of the proofs

I One proves that you can go by the flow of a divergence free vector field
from the first and second situation to the third. The proof is very technical
but is based essentially on the following:

γ0

γ1

Figure 6



Ideas of the proofs

I On the left green part one imposes b = 1, and on the right green part one
takes b = 0 and b is monotone.
One then solve

−∆b = 0
in the subdomain bounded by the three colors with the b given on the
boundary, by the strict maximum principle and the topoligical degree
one easily sees that ∇b does not vanish on the boudary of the 3-color
boundar. Inside one sets v = ∇c with v = ∇⊥b and by the corners one
takes v mapping by its flow the vertical edges to the horizontal ones.
One glues theses maps, while taking into account the necessity to have a
divergence free vector field ....



Ideas of the proofs

Theorem 3 follows from the combination of Theorem 4 and the proposi-
tion 1.



Ideas of the proofs

I Theorem1: Return method of Coron. The ∇θ given by theorem 3 goes
from 0 to 0.
Let us fix ν small.
On [0,T − ν] no control.
On [T − ν,T] one puts ∇θ fastly (with the associated pressure,) i.e the
solution is thought like

1
ν
∇θ(

t − T + ν
ν

, x)



Ideas of the proofs

Precisely For κ ∈ {0, 1} there exists a fixed point to : (denote ω0 := curlu0).
T : C0([0,T],Cl,α(Ω))→ C0([0,T],Cl,α(Ω))

T (ω) = πω0(ϕπ(y)(t, 0, x))

curly = ω on [0,T] ×Ω

div(y) = 0 on [0,T] ×Ω

y.n = ρ(t/µ)u0.n +
κ
ν
∇θ(

t − T + ν
ν

, x).n sur [0,T] × ∂Ω∫
Γi

y(0, x).τ(x)dx =
∫
Γi

u0(x).τ(x)dx, i = 1, .., d∫
Γi

(
∂y
∂t
+ (y.∇)y).τ(x)dx = 0, i = 1, .., d

where Γ0, ....,Γd are the connected components and you (may by restric-
tion) assume that Γ ⊂ Γ0.
π is an extension operator from Cl,α(Ω) to Cl,α(B(0,R)) and from LL(Ω) to
LL(B(0,R)) where R is large. ρ ist 0 away from 0.



Ideas of the proofs

I LL(Ω) is the Log-lipschitz functions.The fixed point gives boundary data
for which there exists a unique solution of (E).



Ideas of the proofs

We skip the proof of theorem 2 which is of the same flavour but the fxed
point is made directly on u due to the lack of regularity, and we use an
adapted contour dynamic introduced by Bertozzi-Constantin.



Possible extensions and open questions

Remark: Potential flows are also solutions of the Navier-Stokes equa-
tions, all except the return method work but we do not have the good
“traditionnal” boundary conditions. What happens with these classi-
cal boundary conditions ? Or with the Navier slip boundary condition
?



Possible extensions and open questions

In 3d: Some problems may occur: for some u0 the solution may blow-
up, and we have difficulties by mapping γ0 onto γ1 with the flow of a
divergence free vector field, that is the existence of volume conserving
isotopy between γ0 and γ1 in Ω. Up to this moment we can prove along
the same ideas
Theorem: Assume that γ0 and γ1 are smooth embeddings of the 2-sphere
which do not intersect and are contractible in Ω, then for any u0 (as in
theorem 1), there exists a time T such that ∀ε > 0 there exists a solution
of the 3d euler equation (1) (2) (3) (4) such that

||ϕu(0,T, γ0) − γ1||∞ ≤ ε.



Possible extensions and open questions

We have some ideas with O.Glass O. Kavian JP Puel to perform numerical
simulations. Some of these are in progress but not very convincing for the
moment being.



Possible extensions and open questions

They relies on the following theorem that in fact we prove in 2d with
complex analysis, but can be proved however in any dimension (to sim-
plify we assume that Ω has a trivial topology):
Theorem Let H−1/2

m (Γ) := {h ∈ H−1/2(∂Ω), < h, 1 >= 0, h = 0 inD′(∂Ω \ Γ)}.
For any h ∈ H−1/2

m (Γ) one definesΨwith zero mean value such that
∆Ψ = 0 in Ω
∂Ψ
∂n
= h on ∂Ω

then the map

h 7→
∂Ψ
∂n /γ

has a strict dense image in H−1/2
m (γ).



Possible extensions and open questions

In fact we have density in more regular trace space. We can compute the
adjoint and then apply it to determine the h of minmal norm that gives a
precise goal to order ε.


