# Generic properties of the Laplace-Dirichlet and Schrödinger operators, with applications to quantum control

Mario Sigalotti (INRIA Nancy - Grand Est and IECN)

#### Main motivation: quantum control

Many technologies require the ability to induce a transition from a state to another of a quantum mechanical system.

- Photochemistry (to induce certain chemical reactions)
- Magnetic Resonance (in order to exploit spontaneous emission)
- Realization of Quantum Computers (to stock information)



Population transfer Problem: Design external fields

- Lasers
- X-Rays
- Magnetic Fields

to drive a quantum mechanical system from one state to another

# Bilinear Schrödinger equation

$$i\dot{\psi} = -\Delta\psi + V\psi + uW\psi$$

$$\Omega \subset \mathbf{R}^d$$
 $\psi(t,x)$  wave function,  $\psi(t,\cdot) \in L^2(\Omega)$ ,  $\|\psi(t,\cdot)\|_2 = 1$ 
 $-\Delta + V$  Schrödinger operator
 $V: \Omega \to \mathbf{R}$  uncontrolled potential
 $u = u(t)$  real-valued control
 $W: \Omega \to \mathbf{R}$  controlled potential

#### Most relevant cases:

- lacksquare  $\Omega\subset \mathbf{R}^d$  bounded domain and  $\psi|_{\partial\Omega}\equiv 0$
- lue  $\Omega$  compact connected manifold,  $\Delta$  Laplace-Beltrami operator
- $\Omega = \mathbf{R}^d$

# Controllability results

#### Negative results

- non-exact controllability in the unit sphere of  $L^2(\Omega)$  (Turinici [2000]);
- non-controllability for the harmonic oscillator:  $\Omega = \mathbf{R}$ ,  $V(x) = x^2$ , W(x) = x (Mirrahimi-Rouchon [2004]).

#### Positive results

- exact controllability in  $H^{5+\varepsilon}(\Omega)$  with  $\Omega=(-1/2,1/2)$ , V=0, W(x)=x (Beauchard [2005], Beauchard-Coron [2006]);
- L²-approximate controllability by Lyapunov methods (Mirrahimi [2006], Nersesyan [2009], Ito-Kunisch [2009]);
- L²-approximate controllability by finite-dimensional techniques (Chambrion-Mason-S-Boscain [2009]).

More than one control (Eberly–Law-like systems): Adami-Boscain [2005], Bloch-Brockett-Rangan [2006], Ervedoza-Puel [2009].

### Discrete spectrum

If  $\Omega$  is a bounded domain or a compact manifold and  $V \in L^{\infty}(\Omega)$ , then  $-\Delta + V$  has discrete spectrum.

#### Theorem (Reed-Simon)

Let  $\Omega=\mathbf{R}^d$ ,  $V\in L^\infty_{\mathrm{loc}}(\mathbf{R}^d,\mathbf{R})$  be such that  $\lim_{|x|\to\infty}V(x)=+\infty$ . Then  $-\Delta+V$ , defined as a sum of quadratic forms, is a self-adjoint operator with compact resolvent. In particular  $\sigma(-\Delta+V)$  is discrete and admits a family of eigenfunctions in  $H^2(\mathbf{R}^d,\mathbf{R})$  which forms an orthonormal basis of  $L^2(\mathbf{R}^d,\mathbf{C})$ . For every eigenfunction  $\phi$  of  $-\Delta+V$  and every a>0,  $x\mapsto e^{a\|x\|}\phi(x)$  is in  $L^2(\mathbf{R}^d,\mathbf{C})$ .

# Conditions ensuring approximate controllability for $-\Delta + V$ with discrete spectrum

$$(\lambda_n(V,\Omega),\phi_n(V,\Omega))_{n\in\mathbb{N}}$$
 eigenpairs of  $-\Delta+V$  on  $\Omega$ 

#### Theorem (U. Boscain, T. Chambrion, P. Mason, M. S.)

Let  $V, W \in L^\infty_{\mathrm{loc}}(\mathbf{R}^d)$  and  $U = [0, \delta]$ . Assume that  $\lim_{|x| \to \infty} V(x) = +\infty$  and that W has at most exponential growth at infinity. If  $(\lambda_{k+1}(V,\Omega) - \lambda_k(V,\Omega))_{k \in \mathbf{N}}$  are  $\mathbf{Q}$ -linearly independent and if

$$\int_{\Omega} W \phi_k(V,\Omega) \phi_{k+1}(V,\Omega) dx \neq 0$$

for every  $j \in \mathbf{N}$ , then the Schrödinger equation corresponding to  $(\Omega, V, W)$  is approximately controllable in  $L^2(\Omega)$ .

#### Advantages:

- Controllability extends to density matrices and tracking
- W unbounded is allowed
- bounded (arbitrarily small) control

#### Genericity

Genericity is a measure of frequency and robustness.

X complete metric space  $\Longrightarrow X$  Baire space, ie,  $\cap_{n \in \mathbb{N}} O_n$  is dense if each  $O_n \subset X$  is open and dense

Residual set: intersection of countably many open and dense subsets of a Baire space

A boolean function  $P: X \to \{0,1\}$  on a Baire space X is called a generic property if there exists a residual subset Y of X such that every x in Y satisfies property P, that is, P(x) = 1.

The sufficient conditions for controllability are in the form of a countable family of non-vanishing relations. The idea is then to associate to each of them a set  $O_n$ .

# Baire spaces and topologies

We consider the cases  $\Omega$  bounded domain and  $\Omega = \mathbf{R}^d$ . In the first case we can consider genericity w.r.t.  $(\Omega, V, W)$ .

$$\begin{array}{l} \Omega \ \to \ \Sigma_m = \{\Omega \mid \Omega \ \ \text{bounded domain with } \mathcal{C}^m \ \ \text{boundary}\}, m \in \mathbf{N} \\ \\ V \ \to \ \mathcal{V}(\Omega) = \left\{ \begin{array}{ll} L^\infty(\Omega) & \Omega \in \Sigma_m \\ \{V \in L^\infty_{loc} \mid \lim_{x \to \infty} V(x) = +\infty\} & \Omega = \mathbf{R}^d \end{array} \right. \\ \\ \mathcal{W} \ \to \ \mathcal{W}(\Omega) = \left\{ \begin{array}{ll} L^\infty(\Omega) & \Omega \in \Sigma_m \\ \{W \in L^\infty_{loc} \mid \lim\sup_{x \to \infty} \frac{\log(|W(x)| + 1)}{\|x\|} < \infty\} & \Omega = \mathbf{R}^d \end{array} \right. \end{array}$$

$$(V, W) \rightarrow \mathcal{Z}(\Omega) = \{(V, W) \in \mathcal{V} \times \mathcal{W} \mid V + uW \in \mathcal{V} \quad \forall u \in U\}$$

We endow these spaces with the  $\mathcal{C}^m$ ,  $L^\infty$  and  $L^\infty \times L^\infty$  topology

# Analytic propagation of non-vanishing conditions and the role of the Laplace–Dirichelet operator when $\Omega$ is bounded

If  $\Omega$  and V satisfy the non-resonance condition

$$(\lambda_k(V,\Omega))_{k\in\mathbf{N}}$$
 are **Q**-linearly independent

then it is clear that generically w.r.t. W the system is approximately controllable, since every condition

$$\int_{\Omega} W \phi_k(V, \Omega) \phi_{k+1}(V, \Omega) dx \neq 0$$

defines an open dense subset of  $\mathcal{W}$ .

If the non-resonance condition is true for  $\lambda_k(0,\Omega)$ , then, by analytic perturbation, it is true for  $\lambda_k(\mu V,\Omega)$  for a generic  $\mu \in \mathbf{R}$  Similarly, if  $\phi_k(0,\Omega)^2$  are linearly independent, then, thanks to

$$\frac{d}{d\mu}|_{\mu=0}\lambda_k(\mu V,\Omega)=\int_{\Omega}V\phi_k(0,\Omega)^2$$

generically with respect to V the sequence  $\frac{d}{d\mu}|_{\mu=0}\lambda_k(\mu V,\Omega)$  is non-resonant. This would imply that generically w.r.t.  $\mu$  the same is true for  $\lambda_k(\mu V,\Omega)$ 

## Generic approximate controllability

Hence, we are left to prove that, generically with respect to  $\Omega \in \Sigma_m$ , either  $\lambda_k(0,\Omega)$  is non-resonant or  $\phi_k(0,\Omega)^2$  is free.

# Generic approximate controllability

Hence, we are left to prove that, generically with respect to  $\Omega \in \Sigma_m$ , either  $\lambda_k(0,\Omega)$  is non-resonant or  $\phi_k(0,\Omega)^2$  is free.

#### Theorem (Y. Privat, M. S.)

Generically with respect to  $\Omega \in \Sigma_m$ ,  $\lambda_k(0,\Omega)$  is non-resonant and  $\phi_k(0,\Omega)^2$  is free.

#### Corollary

Generically with respect to

$$\{(\Omega,V,W)\mid \Omega\in\Sigma_m,\ (V,W)\in\mathcal{Z}(\Omega)\}$$
 the Schrödinger equation

$$i\dot{\psi} = -\Delta\psi + V\psi + uW\psi, \quad \psi|_{\partial\Omega} = 0, \quad u \in [0, \delta]$$

is approximately controllable for every  $\delta > 0$ .

### **Techniques**

The openness of the sets  $O_n$  follows from standard continuity results. The hard point is their density.

#### LOCAL STEP

Use local perturbations to get a domain  $\Omega$  satisfying a desired property (eg, smooth perturbation of a rectangle to obtain a Lipschitz domain for which a prescribed linear combinations of eigenvalues does not vanish and approximate it by a  $\mathcal{C}^m$  domain)

#### GLOBAL STEP

Consider an analytic path of domains starting from  $\Omega$  in order to propagate the good property. The property will be true for all but countably many points of the path.

# Tricky point of the global perturbation analysis: intersection of eigenvalues

If  $\lambda_2$  and  $\lambda_3$  cross  $\lambda_4$  along the analytic perturbation, then the condition  $\lambda_3 - \lambda_2 \neq 0$  becomes  $\lambda_4 - \lambda_3 \neq 0$ .

The best would be to propagate a domain satisfying all the required properties.

Two strategies to avoid the bad effect of eigenvalue rearrangement along the path:

Intersections are meagre: the eigevalues of

$$\left(\begin{array}{cc} a & b \\ b & c \end{array}\right)$$

are double if a = c and b = 0, two conditions on three parameters! (Von Neumann-Wigner [1929], Lupo-Micheletti [1995], Lamberti-Lanza de Cristoforis [2006]). The idea is that by small perturbation of the analytic path we avoid intersections (Arnold, Colin de Verdière, Teytel [1999])

 Limit situations (converge to an example –possibly non-admissible– that satisfies all rearranged conditions)

## Generic analytic properties of $-\Delta$ for topological balls

Let  $F_n: \mathbf{R}^{n(n+1)} \longrightarrow \mathbf{R}$ ,  $n \in \mathbf{N}$ , be a sequence of analytic functions.  $\Omega$  satisfies property  $P_n$  if the first n eigenvalues  $\lambda_1, \ldots, \lambda_n$  of the Laplace-Dirichlet operator on  $\Omega$  are simple and if  $\exists x_1, \ldots, x_n \in \Omega$  and a choice  $\phi_1, \ldots, \phi_n$  of corresponding eigenfunctions such that

$$F_n(\phi_1(x_1),\ldots,\phi_n(x_1),\ldots,\phi_1(x_n),\ldots,\phi_n(x_n),\lambda_1,\ldots,\lambda_n)\neq 0.$$

Assume that, for every  $n \in \mathbf{N}$ , there exists a topological ball  $\mathcal{R}_n$  with Lipschitz boundary satisfying property  $P_n$ . Then a generic  $\Omega \in \Sigma_m$  that is a topological ball satisfies  $P_n$  for every  $n \in \mathbf{N}$ . Key steps of the proof:

- approximation by smooth domains ( $L^{\infty}$  convergence of eigenfunctions Arendt-Daners, 2007)
- analytic propagation by deformations of the domain
- non-crossing of eigenvalues: given two smooth topological balls  $\Omega_0$  and  $\Omega_1$ , there exists an analytic path  $\eta \mapsto \Omega_\eta$  joining them such that the first n eigenvalues of  $\Omega_\eta$  are simple for  $\eta \in (0,1)$  (Teytel, 1999)

# Generic analytic properties of $-\Delta$ for richer topologies

For every  $n \in \mathbf{N}$  let  $J_n \subset \mathbf{N}^n$  be made of all n-uples whose entries are pairwise distinct. Given  $j = (j_1, \ldots, j_n)$  in  $J_n$ , we say that  $\Omega$  satisfies property  $\hat{P}_j$  if  $\lambda_{j_1}, \ldots, \lambda_{j_n}$  are simple and if  $\exists x_1, \ldots, x_n \in \Omega$  and a choice of  $\phi_1, \ldots, \phi_{j_n}$  such that

$$F_n(\phi_{j_1}(x_1),\ldots,\phi_{j_n}(x_1),\ldots,\phi_{j_1}(x_n),\ldots,\phi_{j_n}(x_n),\lambda_{j_1},\ldots,\lambda_{j_n})\neq 0.$$

Assume that, for every  $n \in \mathbf{N}$  and  $j \in J_n$ , there exists a Lipschitz topological ball  $\hat{R}_j$  satisfying property  $\hat{P}_j$ . Then a generic  $\Omega \in \Sigma_m$  satisfies  $\hat{P}_j$  for every  $j \in \cup_{n \in \mathbf{N}} J_n$ .