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I. Introduction

I We consider a 1-D transport equation

yt + Myx = 0 in [0,T ]× [0, L],

with M ∈ R \ {0}.

I Standard controllability problem: given T > 0, y0 and y1 in some
function space, can we find a solution from y0 at t = 0 to y1 at
t = T by choosing ad hoc boundary conditions?

I This equation is (trivially) controllable for T > L/|M| and not
controllable for T < L/|M|.

I Question. What can be said about the controllability of this system
in a limit of vanishing viscosity?

yt + Myx − εyxx = 0 as ε→ 0+?



A motivation

I Boundary control of conservation laws (k = 1) or hyperbolic systems
of conservation laws (k ≥ 2)

ut + f (u)x = 0, u : [0,T ]× [0, L]→ RN , f : Rk → Rk ,

(where for all u, df (u) have real distinct eigenlalues), in particular in
the context of (weak) entropy solutions.

I Entropy solutions can be defined as weak solutions obtained by
vanishing viscosity:

uε → u as ε→ 0+ where uεt + f (uε)x − εuεxx = 0.

Cf. Hopf, Oleinik, Lax, Vol’pert, Kruzhkov, Bianchini-Bressan, etc.

I Question. Is it possible to obtain a uniform control for the viscous
equation as ε→ 0+?



The problem of null controllability in the vanishing viscosity
limit

I Raised by Coron and Guerrero (2005)
I Consider the control system:

yt + Myx − εyxx = 0 in (0,T )× (0, L),

y|x=0 = v(t), y|x=L = 0 in (0,T ),

y|t=0 = y0 in (0, L),

Questions

I Standard null-controllability problem. Given T > 0, is it possible to
drive any y0 to 0 at time T? (The answer is well-known and
positive)

I Uniform controllability problem. Given T > L/|M|, is it possible to
do so at a bounded cost as ε→ 0+?

I Is it possible at least for T ≥ CL/|M|? For which value of C?



Diffusive-dispersive limits

I In the same way, in certain physical situations (e.g. nonlinear
elastodynamics with both viscosity and capillarity effects) it is
interesting to consider diffusive-dispersive limits:

ut + f (u)x − εuxx + νuxxx = 0 as ε, ν → 0+,

which may converge to a weak solution different to the vanishing
viscosity solution or to the same one, according to the situation.

I Cf. the theory of “nonclassical shock waves”, in particular the book
of LeFloch.

I See also Lax-Levermore for the KdV → Burgers (purely dispersive)
limit.



I Consider the control system:
yt −Myx + νyxxx − εyxx = 0 in Q := (0,T )× (0, L),

y|x=0 = v1(t), y|x=L = v2(t), yx|x=L = v3(t) in (0,T ),

y|t=0 = y0 in (0, L),

(1)

Questions

I Standard null-controllability problem. Given T > 0, is it possible to
drive any y0 to 0 at time T? Is it possible while letting v2 = v3 = 0?
(The answer positive and due to Rosier)

I Uniform controllability problem. Given T > L/|M|, is it possible to
do so at a bounded cost as ε, ν → 0+?

I Is it possible at least for T ≥ CL/|M|?



II. Previous studies and results

I The first result, due to Coron and Guerrero, concerns the vanishing
viscosity limit.

Theorem (Coron-Guerrero, 2005)
If M > 0 and T > 4.3 L/M or if M < 0 and T > 57.2 L/|M|, then the
system is uniformly controllable in the sense that there are constants
C , κ > 0, such that for any y0 ∈ L2(0, L) and any ε > 0, one can find a
control v driving the system to 0 at time T , at a cost

‖v‖L2(0,T ) ≤ C exp(−κ
ε

)‖y0‖L2(0,L).



Theorem (Coron-Guerrero, 2005)
If M > 0 and T < L/M or if M < 0 and T < 2L/|M|, then the system is
not uniformly controllable in the sense that there exist C , κ > 0, such
that for any ε > 0, there are initial states y0 ∈ L2(0, L) for which any
control v driving the system to 0 at time T satisfies

‖v‖L2(0,T ) ≥ C exp(
κ

ε
)‖y0‖L2(0,L).

Conjecture. The times L/M if M > 0 and 2L/|M| if M < 0 are
optimal, that is, the system is uniformly controllable for times T > L/M
if M > 0 and T > 2L/|M| if M < 0.

The problem is still open!



Other studies on the uniform controllability in the vanishing viscosity limit

I Guerrero-Lebeau: N-D transport equation in the vanishing viscosity
limit:

yt + M(t, x).∇y − ε∆y = 0.

→ Cost of order O(e−1/ε) if T is large enough and the
characteristics all meet the control zone, of order O(e1/ε) for T
small.

I G.-Guerrero: 1-D Burgers equation in the vanishing viscosity limit:

yt + yyx − εyxx = 0.

→ One can reach a constant state U 6= 0 in time O(1/|U|) at a
constant cost, for any initial condition in L∞.



Diffusive-dispersive limits

Theorem (G.-Guerrero): uniform controllability

There exists a positive constant K0 such that for any positive constant
M, there exist c ,C > 0 such that for any (ν, ε) ∈ (0, 1]× [0, 1], any
T ≥ K0L/M, any y0 ∈ L2(0, L), there exist a control v1 ∈ L2(0,T ) such
that the solution of the system with v2 = v3 = 0 satisfies y|t=T = 0 in
(0, L) and such that

‖v1‖L2 ≤ C√
ν
exp

{
− c
max{ν1/2, ε}

}
‖y0‖L2 .

Theorem (G.-Guerrero): non uniform controllability

Consider M 6= 0 and T > 0 such that T < L
|M| . Then there are some

constants c > 0 and ` ∈ N (independent of ε ∈ [0, 1] and ν ∈ (0, 1]) and
initial states y0 ∈ L2(0, L) such that any control v1 ∈ L2(0,T ) driving y0
to 0 is estimated from below by

‖v1‖L2 ≥ cν` exp
{

c
max{ν1/2, ε}

}
‖y0‖L2 .



III. The approach by real analysis
I Initiated by Coron and Guerrero
I We give the example of uniform controllability for diffusive-dispersive

systems

The standard duality argument (D. Russell, J.-L. Lions, etc.) shows that
if one can prove for the adjoint system

−ϕt + Mϕx − νϕxxx − εϕxx = 0 in (0,T )× (0, L),

ϕ(t, 0) = ϕ(t, L) = ϕx(t, 0) = 0 in (0,T ),

ϕ(T , x) = ϕT (x) in (0, L).

the following observability inequality∫ L

0
|ϕ(0, x)|2 dx ≤ K (T0,M, ν)

∫ T

0
|ϕxx |x=0|2 dt.

then for any y0, one can find controls v1, v2 = v3 = 0 that drive the
system to 0, with

‖v1‖2L2(0,T ) ≤
K (T ,M, ν)

ν
‖y0‖2L2(0,L).



I With homogeneous boundary conditions, the adjoint equation can
be considered as a parabolic equation. One can use typical tools for
the control of parabolic equations.

I One proves a Carleman inequality for the system, à la
Fursikov-Imanuvilov. In the purely diffusive case (ν = 0), one can
use a weight of the form:

exp(−sα) with α(t, x) :=
β(x)

t(T − t)
, s ≥ 0,

with β a positive increasing concave function.

I In the purely dispersive case (ε = 0), a Carleman inequality was
established by Rosier with the previous weight. But optimizing the
time dependence (which will be necessary in the sequel), one can use
a weight of the form

exp(−sα) with α(t, x) :=
β(x)

t1/2(T − t)1/2 , s ≥ 0,



In our diffusive-dispersive case, we set

α(t, x) =
β(x)

tµ(T − t)µ
,

for µ ∈ [1/2, 1] and β as previously.

Proposition

There exist a constant C > 0 independent of T , ν > 0, ε ≥ 0 and
M ∈ R such that for any ϕT ∈ L2(0, L), one has

s
∫ T

0

∫ L

0
αe−2sα

(
ν2|ϕxx |2+(ν2s2α2+ε2)|ϕx |2+(ν2s4α4+ε2s2α2)|ϕ|2

)
dx dt

≤ Cν
∫ T

0
(νsα|x=0 + ε)e−2sα|x=0 |ϕxx |x=0|2 dt,

for any s ≥ CTµ(Tµ + (1 + Tµ|M|µ)/(ν1−µε2µ−1)), where ϕ is the
corresponding solution of the adjoint system.



I This yields an observability inequality of order

I

K ∼ exp


C
ν1/2

ff
,

in the “dispersive regime” where ν & ε2,

I

K ∼
“ν2

ε2
+
ν

ε

”
exp


C
ε

ff
.

in the “diffusive regime” where ν . ε2.

I The constant are huge. This is normal, since we did not use the
transport effect.

I The idea is to use a “dissipation estimate ” (here, for the adjoint
equation) to compensate the size of these constants.



Exponential dissipation estimates
I A close result was obtained by Danchin for the problem of the

vanishing viscosity limit of vortex patches.
I Let us consider some time T1 and times 0 ≤ t1 < t2 ≤ T1 .
I One multiplies the adjoint equation with exp(r(M(T1 − t)− x))ϕ,

one integrate with respect to x (where r is a positive parameter).
I It is essential here that the function (t, x) 7→ M(T1 − t)− x is a

solution of the transport equation.
I After several integration by part, one gets

− d
dt

(
exp{−(νr3 + εr2)(T1 − t)}∫ L

0
exp{r(M(T1 − t)− x)}|ϕ(t, x)|2 dx

)
≤ 0.

I One integrates with respect to time between t1 and t2, and one gets∫ L

0
|ϕ(t1, x)|2dx ≤ κ

∫ L

0
|ϕ(t2, x)|2dx ,

with

κ = exp{ν(t2 − t1)r3 + ε(t2 − t1)r2 + (L−M(t2 − t1))r}.



I One optimizes with respect to r to deduce when t2 − t1 ≥ L/M∫ 1

0
|ϕ(t1, x)|2dx ≤ κ

∫ 1

0
|ϕ(t2, x)|2dx ,

with κ satisfying

I if ε2 & ν:

κ ≤ exp

−c

(M(t2 − t1)− L)2

ε(t2 − t1)

ff
,

I if ε2 . ν:

κ ≤ exp

−c

(M(t2 − t1)− L)3/2

ν1/2(t2 − t1)1/2

ff
.

I If t2 − t1 ≥ K0/M for K0 large enough, this allows to “absorb” the
constant coming from the Carleman inequality.

Carleman

t = 0 t = T1 t = T

Dissipation estimate



IV. The approach by complex analysis
I One can try to approach Coron and Guerrero’s problem (the

vanishing viscosity limit for the transport equation), by suitably
employing the method of moments, à la Fattorini-Russell.

I This allows to improve the time constants in the Coron-Guerrero
theorem.

Theorem (G., 2009)
The control system:

yt + Myx − εyxx = 0 in (0,T )× (0, L),

y|x=0 = v(t), y|x=L = 0 in (0,T ),

y|t=0 = y0 in (0, L),

is still uniformly controllable if M > 0 and T > 4.2L/M or if M < 0 and
T > 6.1L/|M|.

Remark
Coron and Guerrero gave T > 4.3L/M if M > 0 and T > 57.2L/|M| if
M < 0. The main point is that the proof is of completely different
nature...



Ideas of proof
I The proof uses the method of moments, cf. Fattorini-Russell (1971).
I It is also connected to the study of the cost of the control of

parabolic systems for small times, cf.
I Seidman, Seidman-Gowda, Seidman-Avdonin-Ivanov,
I Fernández-Cara-Zuazua,
I Miller,
I Tenenbaum-Tucsnak,
I ...

I Of course, by a time-scaling argument, it is essentially equivalent to
control

ut −∆u = 0,

during the time interval [0, εT ], and to control

ut − ε∆u = 0,

during the time interval [0,T ].



I One still wants to prove an observability inequality of the type

‖ϕ(0, ·)‖L2(0,L) ≤ K exp
(
− κ

ε

)
‖∂xϕ(·, 0)‖L2(0,T ),

for the adjoint equation ϕt + Mϕx + εϕxx = 0 in (0,T )× (0, L),
ϕ = 0 on (0,T )× {0, L},
ϕ(T , ·) = ϕT in (0, L).

I One can easily diagonalize the operator

P := −M∂x − ε∂2
xx ,

by noticing that

∂2
xx(e

Mx
2ε u) = e

Mx
2ε

(
∂2

xxu +
M
ε
∂xu +

M2

4ε2
u
)
,



I Hence the operator −M∂x − ε∂2
xx is diagonalizable in L2(0, L), with

eigenvectors

ek(x) :=
√
2 exp

(
− Mx

2ε

)
sin
(kπx

L

)
. (2)

for k ∈ N \ {0} and corresponding eigenvalues

λk := ε
k2π2

L2 +
M2

4ε
, (3)

the family {ek , k ∈ N \ {0}} being a Hilbert basis of L2(0, L) for the
L2((0, L); exp(Mx

ε ) dx) scalar product.



I Consider a solution ϕ of the adjoint system, where

ϕT (x) =
N∑

k=1

ckek(x).

I We deduce easily

∂xϕ(t, 0) =
N∑

k=1

ck
√
2
kπ
L

exp(−λk(T − t)).

and

ϕ(0, x) =
N∑

k=1

ck exp(−λkT )ek(x).

I Imagine that we have a family ψk which is bi-orthogonal to the
family fk : t 7→ exp(−λk(T − t)) in L2(0,T ):

〈fj , ψk〉L2(0,T ) = δj,k ,

then one deduces that

√
2k
π

L
ck =

∫ T

0
(∂xϕ)(t, 0)ψk(t) dt.



I Then one easily obtains the observability inequality, with a size of
the observability constant “essentially” of order

sup
j,k,l

exp(−λjT )‖ek‖L2(0,L)‖ψl‖L2(0,T )

(This is not completely precise.)

I Should we be able to construct a “nice” bi-orthogonal family ψl , we
see that this constant will be small provided that T is large enough
(remember λk = ε k2π2

L2 + M2

4ε ≥
M2

4ε )

I Consequently, the main point is to construct this family and have
nice estimates on it.



Construction of the bi-orthogonal family
I Imagine that you are given an entire function J ∈ H(C), of

exponential type T/2: for some constant C > 0, one has

|J(z)| ≤ C exp(T |z |/2) for all z ∈ C,

having simple poles at the points −iλk and whose restriction to R is
in L2.

I Then one defines

Jk(z) :=
J(z)

J ′(−iλk)(z + iλk)
,

which is still an entire function of exponential type T/2, is still in L2

on R, and it satisfies
Jk(−iλj) = δjk .



I Since Jk is an entire function of exponential type T/2 and in L2(R),
by the Paley-Wiener theorem, one can find ϕk ∈ L2(R), supported in
(−T/2,T/2), such that

Jk(z) = ϕ̂k(z) for z ∈ C.

I The relation Jk(−iλj) = δjk now yields∫ T/2

−T/2
ϕk(τ) exp(−λjτ) dτ = δjk .

I Translate by T/2 and you are done.



I Hence the core of the proof is to construct an entire function J, of
exponential type T/2, having simple poles at −iλk , whose restriction
to R belongs to L2, and yielding the best possible estimates.

I An entire function having the k2, k ∈ N \ {0} as its simple zeros is
the following Weierstrass product:

∞∏
k=1

(
1− z

k2

)
=

sin(π
√
z)

π
√
z

,

which is an entire function (despite the square roots).
I Now a function having simple zeros exactly at {−iλk , k ∈ N \ {0} }

by

Φ(z) =

sin
(

L√
ε

√
iz − M2

4ε

)
L√
ε

√
iz − M2

4ε

. (4)



I It is elementary to see that Φ is of exponential type, and even
satisfies

|Φ(z)| ≤ C (M, ε) exp(
L√
2ε

√
|z |) as |z | → +∞. (5)

I But precisely because of this “sub”-exponential estimate, the
Phragmen-Lindelöf theorem (or direct computations) proves that
this function cannot be bounded on the real line.

I Hence, the idea is to find another entire function F ∈ H(C), called a
multiplier, such that

I the function F (z)Φ(z) now suitably behaves on the real line,
I it is of exponential type T/2.

Such a technique can be traced back to R. Paley and N. Wiener
themselves.



The Beurling-Malliavin multiplier
I We use a construction of a multiplier due to Beurling and Malliavin

(1961).
I Introduce

s(t) =
T
2π

t − L
π
√
2ε

√
t.

We notice that s is increasing for t larger than

A :=
1
2ε

(
L
T

)2

. (6)

I Using that∫ ∞
0

log
∣∣∣∣1− x2

t2

∣∣∣∣ dtγ = |x |γπ cot πγ
2

for 0 < γ < 2,

we see that ∫ ∞
0

log
∣∣∣∣1− x2

t2

∣∣∣∣ ds(t) = − L√
2ε

√
|x |.



I We introduce

B := 4A =
2
ε

(
L
T

)2

, (7)

which satisfies s(B) = 0.
I Now one defines ν as the restriction of the measure ds(t) to the

interval [B,+∞). Let us underline that this measure is positive
(since B ≥ A).

I Next we introduce for z ∈ C:

U(z) :=

∫ ∞
0

log
∣∣∣∣1− z2

t2

∣∣∣∣ dν(t) =

∫ ∞
B

log
∣∣∣∣1− z2

t2

∣∣∣∣ ds(t), (8)

and for z ∈ C \ R

g(z) :=

∫ ∞
0

log
(
1− z2

t2

)
dν(t) =

∫ ∞
B

log
(
1− z2

t2

)
ds(t). (9)



I By “atomizing” the measure dν in the above integral, we can define

Ũ(z) :=

∫ ∞
0

log
∣∣∣∣1− z2

t2

∣∣∣∣ d [ν(t)], (10)

where [ · ] denotes the integer part and where

ν(t) =

∫ t

0
dν. (11)

In the same way as previously we introduce

h(z) :=

∫ ∞
0

log
(
1− z2

t2

)
d [ν](t). (12)

I Of course,

U(z) = Re(g(z)) and Ũ(z) = Re(h(z)).

Now exp(h(z)) is an entire function. Indeed, calling {µk , k ∈ N}
the discrete set in R consisting of the discontinuities of the function
t 7→ [ν(t)], we have

exp(h(z)) =
∏
k∈N

(
1− z2

µ2
k

)
. (13)



I Finally, the multiplier which we will use is the following:

F (z) := exp(h(z − i)).

I The rest of the proof consists in proving that F (z)Φ(z) is of
exponential type T/2, and to give estimates on x 7→ F (x)Φ(x) on R
and on F (−iλk), so that we have the correct estimates on

Jk(z) =
F (z)Φ(z)

F (−iλk)Φ′(−iλk)(z + iλk)
.



I 1. Estimates on the real line.

Lemma
For x ∈ R, one has

U(x) ≤ − L√
2ε

√
|x |+ C1aB, (14)

where C1 is the following positive (and finite) constant

C1 := −min
x∈R

∫ 1

0
log
∣∣∣∣1− x2

t2

∣∣∣∣ d(t −
√
t) ' 2.34 < 2.35. (15)

Lemma (Koosis)
We have for z = x + iy ∈ C:∫ ∞

0
log
∣∣∣∣1− z2

t2

∣∣∣∣ d([ν](t)−ν(t)) ≤ log
(max(|x |, |y |)

2|y |
+

|y |
2max(|x |, |y |)

)
.

(16)



I Using the fact that U is a harmonic function on the upper plane,
hence admits an integral representation, one can compare U(x − i)
and U(x), and finally get the following estimate on the multiplier:

∀x ∈ R, Ũ(x − i) ≤ − L√
2ε

√
|x |+ aBC1 + log+(|x |) +

T
2
.



I 2. Estimates on the imaginary axis.

Lemma
For all y ∈ R one has∫ ∞

B
log
(
1 +

y2

t2

)
d [s] ≥

∫ ∞
B

log
(
1 +

y2

t2

)
ds − log

(
1 +

y2

B2

)
. (17)

Lemma
One has ∫ B

0
log
∣∣∣∣1 +

y2

t2

∣∣∣∣ ds = aBG
( y
B

)
. (18)

where

G (y) :=

∫ 1

0
log
∣∣∣∣1 +

y2

t2

∣∣∣∣ d(t −
√
t)

is a bounded function.



I This yields an estimate of the type:

∀y ∈ R−, Ũ(iy) ≥ T
2
|y | − L√

ε

√
|y | − log

(
1 +

y2

B2

)
− aBG

( y
B

)
.

I We can (more easily) obtain an upper bound of the type

|Ũ(iy)| ≤ T
2
|y |,

which yields that the multiplier is indeed of exponential type T/2.

I Following the constants from line to line, we then deduce the result.



V. Open problems

I The Coron-Guerrero conjecture is still open!

I When dispersion is present, so is the case of negative M. . .

I Can one estimate the time of uniform controllability for variable M?

I Can one treat the high frequencies and the low frequencies
differently? (We are not optimal for the high frequencies; perhaps
we could use the Lebeau-Robbiano-Zuazua spectral inequality for
the low frequencies?)

I What can be said about nonlinear equations?

I Can one consider the case of systems? (Long horizon quest: control
the compressible Navier-Stokes with small viscosity...)


