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|. Introduction

» We consider a 1-D transport equation
Yt + My, =0in [0, T] x [0, L],
with M € R\ {0}.
» Standard controllability problem: given T > 0, yg and y; in some

function space, can we find a solution from yg at t =0 to y; at
t = T by choosing ad hoc boundary conditions?

» This equation is (trivially) controllable for T > L/|M| and not
controllable for T < L/|M|.

» Question. What can be said about the controllability of this system
in a limit of vanishing viscosity?

Ve+ My, —eye =0 as € — 077



A motivation

» Boundary control of conservation laws (k = 1) or hyperbolic systems
of conservation laws (k > 2)

ue + f(u)x =0, u: [0, T] x[0,L] = RN, f:RK = Rk,

(where for all u, df (u) have real distinct eigenlalues), in particular in
the context of (weak) entropy solutions.

» Entropy solutions can be defined as weak solutions obtained by
vanishing viscosity:

u® — uase— 07 where uf + f(u°)x —eus, = 0.
Cf. Hopf, Oleinik, Lax, Vol'pert, Kruzhkov, Bianchini-Bressan, etc.

» Question. Is it possible to obtain a uniform control for the viscous
equation as € — 077



The problem of null controllability in the vanishing viscosity
limit

» Raised by Coron and Guerrero (2005)

» Consider the control system:

Y+ My, — ey =01in (0, T) x (0, L),
Y|x=0 = V(t)7 Yix=L = Oin (07 T)7
Y|t=0 = Y0 in (07 L)7

Questions

» Standard null-controllability problem. Given T > 0, is it possible to
drive any yp to 0 at time T7? (The answer is well-known and
positive)

» Uniform controllability problem. Given T > L/|M]|, is it possible to
do so at a bounded cost as € — 077

> Is it possible at least for T > CL/|M|? For which value of C?



Diffusive-dispersive limits

> In the same way, in certain physical situations (e.g. nonlinear
elastodynamics with both viscosity and capillarity effects) it is
interesting to consider diffusive-dispersive limits:

Ur + F(U)x — Elnx + VU =0 as e, — 0T,
which may converge to a weak solution different to the vanishing

viscosity solution or to the same one, according to the situation.

» Cf. the theory of “nonclassical shock waves”, in particular the book
of LeFloch.

> See also Lax-Levermore for the KdV — Burgers (purely dispersive)
limit.



» Consider the control system:
— My, + Uy — €y = 0in Q := (0, T) x (0, L),
Yix=0 = Vi(t), Yix=r = va(t), Yxx=L = v3(t) in (0, T), (1)
Y|t=0 = Y yo in (0, L),

Questions

» Standard null-controllability problem. Given T > 0, is it possible to
drive any yg to 0 at time T7 Is it possible while letting v» = v3 = 07
(The answer positive and due to Rosier)

» Uniform controllability problem. Given T > L/|M|, is it possible to
do so at a bounded cost as ¢,v — 077

» Is it possible at least for T > CL/|M|?



[1. Previous studies and results

» The first result, due to Coron and Guerrero, concerns the vanishing
viscosity limit.

Theorem (Coron-Guerrero, 2005)

IfM>0and T >43L/Morif M<0and T >57.2L/|M|, then the
system is uniformly controllable in the sense that there are constants
C,k >0, such that for any yo € L%(0,L) and any ¢ > 0, one can find a
control v driving the system to O at time T, at a cost

K
Ivllz,1) < CeXP(—g)HYOHLz(o,Ly



Theorem (Coron-Guerrero, 2005)

IfM>0and T <L/Morif M<0and T < 2L/|M|, then the system is
not uniformly controllable in the sense that there exist C,x > 0, such
that for any ¢ > 0, there are initial states yo € L?(0, L) for which any
control v driving the system to O at time T satisfies

K
Ivliz0, 1) = Cexp(=)llyolle2(0,1)-

e

Conjecture. The times L/M if M > 0 and 2L/|M| if M < 0 are
optimal, that is, the system is uniformly controllable for times T > L/M
if M>0and T >2L/|M|if M <0.

The problem is still open!



Other studies on the uniform controllability in the vanishing viscosity limit

» Guerrero-Lebeau: N-D transport equation in the vanishing viscosity
limit:
ye + M(t,x).Vy —eAy = 0.
— Cost of order O(e~1/¢) if T is large enough and the

characteristics all meet the control zone, of order O(e'/¢) for T
small.

» G.-Guerrero: 1-D Burgers equation in the vanishing viscosity limit:

Yo+ Yx — €Yx = 0.

— One can reach a constant state U # 0 in time O(1/|U|) at a
constant cost, for any initial condition in L*°.



Diffusive-dispersive limits
Theorem (G.-Guerrero): uniform controllability

There exists a positive constant Ky such that for any positive constant
M, there exist ¢, C > 0 such that for any (v,¢) € (0,1] x [0, 1], any

T > KoL/M, any yo € L2(0, L), there exist a control v; € L2(0, T) such
that the solution of the system with v» = v3 = 0 satisfies y;,—7 =0 in
(0, L) and such that

villez < —= — [lyoll

v ex .

N P max{v1/2 ¢} Yollez
heorem (G.-Guerrero): non uniform controllability

Consider M #£ 0 and T > 0 such that T < |—,\L/I| Then there are some

constants ¢ > 0 and ¢ € N (independent of £ € [0, 1] and v € (0, 1]) and
initial states yp € L2(0, L) such that any control v; € L2(0, T) driving yo
to 0 is estimated from below by

Iifliz > vt expd ———— Y lyolle.
max{v1/2 e}



[Il. The approach by real analysis

» Initiated by Coron and Guerrero
» We give the example of uniform controllability for diffusive-dispersive
systems

The standard duality argument (D. Russell, J.-L. Lions, etc.) shows that
if one can prove for the adjoint system

_¢t+M<pX_V§0xxx_5§0xx =0 in (07 T) X (07 L)7
©(t,0) = p(t,L) = ¢x(t,0) =0 in (0, T),
o(T,x) = p7(x) in (0,L1).

the following observability inequality

L T
[ 190,08 e < K(To, M) [ [ecol? .
0 0

then for any yg, one can find controls vy, vo» = v3 = 0 that drive the
system to 0, with

K(T,M,v
WL

HVIH%"‘(O,T) < ”%Z(O,L)'



» With homogeneous boundary conditions, the adjoint equation can
be considered as a parabolic equation. One can use typical tools for
the control of parabolic equations.

» One proves a Carleman inequality for the system, a la
Fursikov-Imanuvilov. In the purely diffusive case (v = 0), one can
use a weight of the form:

B(x)

exp(—sa) with a(t, x) := (T 1) s >0,

with 8 a positive increasing concave function.

> In the purely dispersive case (¢ = 0), a Carleman inequality was
established by Rosier with the previous weight. But optimizing the
time dependence (which will be necessary in the sequel), one can use
a weight of the form

i) o,

eXp(—SCE) with Oé(t7X) = w, =



In our diffusive-dispersive case, we set

A(x)

a(t,x) = w(T =1

for u € [1/2,1] and (3 as previously.
Proposition

There exist a constant C > 0 independent of T, v >0, ¢ > 0 and
M € R such that for any o1 € L3(0,L), one has

T oL
s/ / e %5 (1/2|<,0XX|2+(1/252a2—|—52)|g0x|2+(V254a4—|—5252a2)|g0\2) dx dt
o Jo
-
< Cl// (vsax—o —|—5)e‘25“\X=°|¢XX|X:0|2dt,
0

for any s > CTH(T* + (1 + TH|M|*)/(vt~He2#71)), where ¢ is the
corresponding solution of the adjoint system.



» This yields an observability inequality of order

C
KNeXp{m}7

in the "dispersive regime" where v > €2,

K~ (5 e (S}

in the "diffusive regime” where v < €2,

>

» The constant are huge. This is normal, since we did not use the
transport effect.

> The idea is to use a "dissipation estimate " (here, for the adjoint
equation) to compensate the size of these constants.



Exponential dissipation estimates

» A close result was obtained by Danchin for the problem of the
vanishing viscosity limit of vortex patches.

> Let us consider some time T; and times 0 < t; < tr, < T7 .

» One multiplies the adjoint equation with exp(r(M(T1 — t) — x))¢p,
one integrate with respect to x (Where r is a positive parameter).

» It is essential here that the function (t,x) — M(Ty —t) — x is a
solution of the transport equation.

» After several integration by part, one gets

d 3 2
- d—t(exp{—(ur +erf)(Ty—t)}
L
/ exp{r(M(Ty — t) — x)}p(t, x) |2 dx) <0.
0
» One integrates with respect to time between t; and t», and one gets

L L
JAE O Ry eI
0 0
with
k= exp{v(ta — t)r} + e(ta — t1)r* + (L — M(ty — t1))r}.



» One optimizes with respect to r to deduce when t, — t; > L/M
1 1
| lettaax < [ fetea e
0 0

with x satisfying

> ife? >
(M(t2 — tx) — L)? }
< ez M) =)
n_exp{ c (6o~ 1) )
» ife? <
(M(t2 — ) — L)”}

< _
K < exp{ c V1/2(t2 — t1)1/2

> If to — t1 > Ko/M for Ky large enough, this allows to “absorb” the

constant coming from the Carleman inequality.
t=T t=T

t=20

%K—J —
Carleman

Dissipation estimate




I\V. The approach by complex analysis

» One can try to approach Coron and Guerrero's problem (the
vanishing viscosity limit for the transport equation), by suitably
employing the method of moments, & la Fattorini-Russell.

» This allows to improve the time constants in the Coron-Guerrero
theorem.

Theorem (G., 2009)

The control system:
Ye + My, — ey =0in (0, T) x (0, L),
Yix=0 = V(t), ¥x=L =0in (0, T),
Y=o = o in (0, L),

is still uniformly controllable if M > 0 and T > 4.2L/M or if M < 0 and
T>6.1L/|M|.

Remark

Coron and Guerrero gave T > 4.3L/M if M > 0 and T > 57.2L/|M| if
M < 0. The main point is that the proof is of completely different
nature...



|deas of proof

» The proof uses the method of moments, cf. Fattorini-Russell (1971).
» It is also connected to the study of the cost of the control of
parabolic systems for small times, cf.
» Seidman, Seidman-Gowda, Seidman-Avdonin-lvanov,
Fernandez-Cara-Zuazua,
Miller,
Tenenbaum-Tucsnak,

vvyY vy

» Of course, by a time-scaling argument, it is essentially equivalent to
control
up — Au =0,

during the time interval [0, T], and to control
ur —eAu =0,

during the time interval [0, T].



» One still wants to prove an observability inequality of the type

K
1600, zo.ny < K exp (= =) 9ol 0) 20,7
for the adjoint equation

vt + Moy, +epy =01in (0, T) x (0, L),
¢=00n(0,T)x{0,L},
o(T,-)=e71in (0,L).

» One can easily diagonalize the operator

P .= —M?J, — £d?

XX

by noticing that

« . M2
3ﬁx(e%u):e% (83Xu+ —Ox u—|—4 5 )



» Hence the operator —Md, — €92, is diagonalizable in L2(0, L), with
eigenvectors

ex(x) == V2exp ( — A;—;) sin <kLLX) (2)

for k € N\ {0} and corresponding eigenvalues

k272 M?

RERS ®)

the family {ex, k € N\ {0}} being a Hilbert basis of L2(0, L) for the
L2((0, L); exp(™x) dx) scalar product.



» Consider a solution ¢ of the adjoint system, where

N
= Z ckex(x)
k=1

» We deduce easily
dyp(t,0) chf— exp(—Ai(T — 1))

and
N

x) = Z ck exp(— Ak T)ex(x).

k=1
» Imagine that we have a family ¢, which is bi-orthogonal to the
family fi : t — exp(—=M(T —t)) in L2(0, T):

(£, Vi) 20,1y = Gk

then one deduces that

\@k%ck:/o (0x) (£, 0) e (£) dt



» Then one easily obtains the observability inequality, with a size of
the observability constant “essentially” of order

sup exp(—A; Tl ekl z0,0) 191l 2(0,7)
1K,

(This is not completely precise.)

» Should we be able to construct a “nice” bi-orthogonal family v, we
see that this constant will be small provided that T is large enough

_ K2 M? M?
(remember \y = e*5- + 7= > 75)

» Consequently, the main point is to construct this family and have
nice estimates on it.



Construction of the bi-orthogonal family

» Imagine that you are given an entire function J € H(C), of
exponential type T/2: for some constant C > 0, one has

|J(2)| < Cexp(T|z|/2) for all z € C,
having simple poles at the points —i\x and whose restriction to R is
in L2,
» Then one defines

J(z)

&) = e T

which is still an entire function of exponential type T /2, is still in L2
on R, and it satisfies
J(=i%j) = Ojk



» Since Ji is an entire function of exponential type T /2 and in L2(R),
by the Paley-Wiener theorem, one can find ¢, € L?(R), supported in
(=T/2,T/2), such that

Ji(z) = px(z) for z € C.

> The relation Ji(—i\;) = djx now yields

T/2
/ gpk(T)exp(—)\jT) deéjk‘
—-T/2

» Translate by T/2 and you are done.



» Hence the core of the proof is to construct an entire function J, of
exponential type T /2, having simple poles at —i\x, whose restriction
to R belongs to L2, and yielding the best possible estimates.

» An entire function having the k2, k € N'\ {0} as its simple zeros is
the following Weierstrass product:

sl z sin(my/z
kH_l(l‘kz):frﬁ)’

which is an entire function (despite the square roots).

» Now a function having simple zeros exactly at {—i\x, k € N\ {0} }
by

o= (e M) (@)

L _ M2
NG 1z 4e



> It is elementary to see that ® is of exponential type, and even
satisfies

b(2)] < C(M, ) exp(jgﬁ) as |zl — oo, (5)

» But precisely because of this “sub™-exponential estimate, the
Phragmen-Lindelof theorem (or direct computations) proves that
this function cannot be bounded on the real line.

» Hence, the idea is to find another entire function F € H(C), called a
multiplier, such that
> the function F(z)®(z) now suitably behaves on the real line,
> it is of exponential type T /2.
Such a technique can be traced back to R. Paley and N. Wiener
themselves.



The Beurling-Malliavin multiplier
» We use a construction of a multiplier due to Beurling and Malliavin
(1961).

» Introduce
T L

s(t)= —t — Vt.
(&) 2 w/2e
We notice that s is increasing for t larger than
1 /L\?
A=—1|=] . 6
2¢e (T) (6)
» Using that
o] 2
/ log |1 — % dt” = |x\'y7rcotﬂ for 0 < vy <2,
we see that

1= as() = — £ Ui
t2 V2 '

oo
/ log
0




» We introduce

B:—4A—§<7L_>27 )

which satisfies s(B) = 0.

» Now one defines v as the restriction of the measure ds(t) to the
interval [B, +00). Let us underline that this measure is positive
(since B > A).

» Next we introduce for z € C:

U(z) = /OOO log

and for z€e C\ R

g(z) = /OOO log (1— i) du(t) —/: log (1— i) ds(t). (9)

2

2
z z

du(t) = /OO log

B




» By “atomizing” the measure dv in the above integral, we can define

0(z) = /O " log (1)), (10)

where [-] denotes the integer part and where

v(t) = /Ot dv. (11)

In the same way as previously we introduce

h(z) = /Ooo log (1 - i) d[v(0). (12)

,_Z
g2

» Of course,
U(z) = Re(g(2)) and U(z) = Re(h(2)).

Now exp(h(z)) is an entire function. Indeed, calling {u«, k € N}
the discrete set in R consisting of the discontinuities of the function
t — [v(t)], we have

exp(h(2)) = || (1 - 22) : (13)

keN



» Finally, the multiplier which we will use is the following:
F(z) ;= exp(h(z — ).

> The rest of the proof consists in proving that F(z)®(z) is of
exponential type T /2, and to give estimates on x — F(x)®(x) on R
and on F(—i)g), so that we have the correct estimates on

B F(z)®(2)
&) = R Cin iz - i)




» 1. Estimates on the real line.

Lemma
For x € R, one has

U(x) < -%ﬁm + GiaB, (14)

where Cy is the following positive (and finite) constant

1 2
¢y := —min log
xER 0

X
1-=

d(t—+t) ~234<235  (15)

Lemma (Koosis)
We have for z = x+ iy € C:

o0
/ log
0

\_Z
2

d([(t) - (1)) < log (max(zfyl{ g max|(y|x|, o)
(16




» Using the fact that U is a harmonic function on the upper plane,
hence admits an integral representation, one can compare U(x — i)
and U(x), and finally get the following estimate on the multiplier:

- L T
Vx e R, U(x — i) < ——=/|x| + aBCy + log™ (|x]) + —.
(=) <~/ + 3Gy -+ log (1) +



» 2. Estimates on the imaginary axis.

Lemma
For all y € R one has

/Boolog(IJr}:)d[s]Z/Igoolog(1+):)ds—log<1+;), (17)

Lemma
One has R ,
Y — Y
/0 log 1—&—? ds—aBG(B). (18)
where
1 )2
G(y) ::/ log |1+ 25| d(t - V)
0

is a bounded function.



» This yields an estimate of the type:

T L 3%
R™ — — | 1+—= | —aBG|(=].
W R i) 2 iyl - =yl og (14 5; ) - 386 (%)
» We can (more easily) obtain an upper bound of the type
o~ T
0@ < Iyl
which yields that the multiplier is indeed of exponential type T /2.

» Following the constants from line to line, we then deduce the result.



V. Open problems

» The Coron-Guerrero conjecture is still open!

» When dispersion is present, so is the case of negative M. ..

» Can one estimate the time of uniform controllability for variable M?

» Can one treat the high frequencies and the low frequencies
differently? (We are not optimal for the high frequencies; perhaps
we could use the Lebeau-Robbiano-Zuazua spectral inequality for
the low frequencies?)

» What can be said about nonlinear equations?

» Can one consider the case of systems? (Long horizon quest: control
the compressible Navier-Stokes with small viscosity...)



