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Introduction

We work in a particular class of plane convex sets:

A := {K convex set in R
2, s(K) = O,P (K) = 2π}.

where s(K) denotes the Steiner point of K and P (K) its
perimeter.

What is the "shape" of A?
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Introduction

We work in a particular class of plane convex sets:

A := {K convex set in R
2, s(K) = O,P (K) = 2π}.

where s(K) denotes the Steiner point of K and P (K) its
perimeter.

What is the "shape" of A?

A is compact

A is "convex" (for the Minkowski sum)

What is the boundary of A ? Does it contain only
polygons?
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The farthest convex set

Let C0 be a given convex set in A.
Find the "farthest convex set" of C0 in A, i.e. one which
satisfies

d(K,C0) = max{d(C,C0), C ∈ A}.
where d stands for a given distance among convex sets,
e.g. the Hausdorff distance or the L2 distance.

Benasque August 26, 2009 – p. 3/18



The farthest convex set

Let C0 be a given convex set in A.
Find the "farthest convex set" of C0 in A, i.e. one which
satisfies

d(K,C0) = max{d(C,C0), C ∈ A}.
where d stands for a given distance among convex sets,
e.g. the Hausdorff distance or the L2 distance.

Theorem [Existence] For any suitable distance, there exists
at least one farthest convex set in the class A.
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The support function(1)

Let K be a plane convex set.
The support function hK of K is defined by:

hK(θ) := max{x · eiθ : x ∈ K} .
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The support function(1)

Let K be a plane convex set.
The support function hK of K is defined by:

hK(θ) := max{x · eiθ : x ∈ K} .

The perimeter P (K) of the convex set is given by:

P (K) =

∫ 2π

0

hK(θ) dθ .

The Steiner point s(K) of the convex set is defined by:

s(K) =
1

π

∫ 2π

0

hK(θ)eiθ dθ .
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The support function(2)

The support function gives an easy characterization of
convex sets:

K is a convex set ⇐⇒ h′′

K + hK is a positive measure
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The support function(2)

The support function gives an easy characterization of
convex sets:

K is a convex set ⇐⇒ h′′

K + hK is a positive measure

The polygons are also well characterized

K is a polygon ⇐⇒ h′′

K + hK =

n
∑

j=1

ajδθj

where a1, a2, . . . , an and θ1, θ2, . . . , θn denote the lengths of
the sides and the angles of the corresponding outer
normals.

Benasque August 26, 2009 – p. 5/18



Examples

the equilateral triangle T :

hT (θ) =



























2π

3
√

3
cos(θ − π/3) 0 ≤ θ ≤ 2π/3

2π

3
√

3
cos(θ − π) 2π/3 ≤ θ ≤ 4π/3

2π

3
√

3
cos(θ − 5π/3) 4π/3 ≤ θ ≤ 2π .
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√

3
cos(θ − π) 2π/3 ≤ θ ≤ 4π/3

2π

3
√

3
cos(θ − 5π/3) 4π/3 ≤ θ ≤ 2π .

The line segments are particular convex sets.
If Σα designate the segment [−iπ

2
eiα, iπ

2
eiα], its support

function is given by

hα(θ) :=
π

2
| sin(θ − α)|

which satisfies hα
′′ + hα = π(δα + δπ+α).
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Support function and distances

The Hausdorff distance can be defined using the support
functions:

dH(K,L) = ‖hK − hL‖∞.

We can also define a Lp distance (Mc Clure and Vitale) by

dp(K,L) :=

(
∫ 2π

0

|hK − hL|p dθ

)1/p

.

We will use here only the L2 distance.
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A geometric inequality

Theorem Let K be any plane convex set with its Steiner
point at the origin. Then

max hK ≤ P (K)

4
≤ min hK + maxhK ,

where both inequalities are sharp and saturated by any line
segment.
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A geometric inequality

Theorem Let K be any plane convex set with its Steiner
point at the origin. Then

max hK ≤ P (K)

4
≤ min hK + maxhK ,

where both inequalities are sharp and saturated by any line
segment.

The first inequality is due to P. Mc Mullen. It implies that the
diameter of A is less than π/2.
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Idea of the proof

We introduce F (K) := minhK + maxhK and a line L which
go through O and a point where hK is minimum.
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K 7→ max hK is convex for the Minkowski sum.

reduction to symmetric sets: K → 1

2
(K + σL(K))

preserves P, s,min and decreases max.

Let S be the segment orthogonal to L and for any
convex K introduce Kt := tK + (1 − t)S. We prove that
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Idea of the proof

We introduce F (K) := minhK + maxhK and a line L which
go through O and a point where hK is minimum.

K 7→ max hK is convex for the Minkowski sum.

reduction to symmetric sets: K → 1

2
(K + σL(K))

preserves P, s,min and decreases max.

Let S be the segment orthogonal to L and for any
convex K introduce Kt := tK + (1 − t)S. We prove that
F (K) < F (S) ⇒ F (Kt) < F (S) ∀t > 0.

It suffices to prove that S is a local minimum.
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The farthest convex set (Hausdorff)

Theorem [farthest convex set for Hausdorff distance]
If C is a given convex set in the class A, then the convex set
KC for which

dH(C,KC) = max{dH(C,K) : K ∈ A}

is a segment.

O

P

Q

Σ
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For the L2 distance

We come back to the L2 distance

Q(K) =

∫ 2π

0

(hK − hC)2 dθ =

∫ 2π

0

h2
K − 2hKhC + h2

C dθ
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For the L2 distance

We come back to the L2 distance

Q(K) =

∫ 2π

0

(hK − hC)2 dθ =

∫ 2π

0

h2
K − 2hKhC + h2

C dθ

More generally, we consider functionals J like

J(K) :=

∫ 2π

0

a h2
K + b h′

K
2
+ c hK + d h′

K dθ

where a and b are nonnegative bounded functions of θ, one
of them being positive almost everywhere. The functions
c, d are assumed to be bounded.
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A general result

Theorem Let J be a functional defined by

J(K) :=

∫ 2π

0

a h2
K + b h′

K
2
+ c hK + d h′

K dθ

where a, b, c, d satisfy the above conditions. Then every
local maximizer of the functional J within the class A is
either a segment or a triangle.
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A general result

Theorem Let J be a functional defined by

J(K) :=

∫ 2π

0

a h2
K + b h′

K
2
+ c hK + d h′

K dθ

where a, b, c, d satisfy the above conditions. Then every
local maximizer of the functional J within the class A is
either a segment or a triangle.

Corollary The farthest convex set for the L2 distance is
either a segment or a triangle.
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The optimality condition (1)

Let K0 be a (local) maximizer of some functional J defined
on the class A, h0 be its support function and Sh0

the
support of the measure h′′

0 + h0.
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The optimality condition (1)

Let K0 be a (local) maximizer of some functional J defined
on the class A, h0 be its support function and Sh0

the
support of the measure h′′

0 + h0.

First order condition:
∃ξ0 ∈ H1(T), ξ0 ≤ 0, and µ1, µ2, µ3 ∈ R such that

ξ0 = 0 on Sh0
,

and ∀v ∈ H1(T),

〈

J ′(h0), v
〉

=
〈

ξ0 + ξ0
′′, v

〉

+

∫ 2π

0

v(µ1 + µ2 cos θ + µ3 sin θ)dθ .
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The optimality condition (2)

Second order condition: Moreover, if v ∈ H1(T) is such that
∃λ ∈ R which satisfies











v′′ + v ≥ λ(h0
′′ + h0)

v ≥ λh0
〈

ξ0 + ξ0
′′, v

〉

+
∫ 2π
0

v(µ1 + µ2 cos θ + µ3 sin θ)dθ = 0.

then
〈

J ′′(h0), v, v
〉

≤ 0 .
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Sketch of the proof of the main theorem

We follow ideas by T. Lachand-Robert, M.Peletier and J.
Lamboley, A. Novruzi.

We want to prove that the support S0 of h′′

0 + h0 does not
contain more than 3 points.
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Sketch of the proof of the main theorem

We follow ideas by T. Lachand-Robert, M.Peletier and J.
Lamboley, A. Novruzi.

We want to prove that the support S0 of h′′

0 + h0 does not
contain more than 3 points.

Assume, for a contradiction, that S0 contains at least four
points θ1 < θ2 < θ3 < θ4. We solve the four differential
equations

{

v′′i + vi = δθi
θ ∈ (θ1 − ε, θ4 + ε)

vi(θ1 − ε) = vi(θ4 + ε) = 0,
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Sketch of the proof (2)

We choose four numbers λi, i = 1, . . . , 4 such that the three
following conditions hold, where we denote by v the function
defined by v =

∑4

i=1
λivi:

v′(θ1 − ε) = v′(θ4 + ε) = 0,

∫ 2π

0

v dθ = 0 .
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Sketch of the proof (2)

We choose four numbers λi, i = 1, . . . , 4 such that the three
following conditions hold, where we denote by v the function
defined by v =

∑4

i=1
λivi:

v′(θ1 − ε) = v′(θ4 + ε) = 0,

∫ 2π

0

v dθ = 0 .

Then v is admissible for the second order condition and we
check that

〈

J ′′(h0), v, v
〉

> 0

which is a contradiction.

Benasque August 26, 2009 – p. 16/18



The farthest convex set (L2 distance)

Theorem If C is a given convex set in the class A, then the
convex set KC for which

d2(C,KC) = max{d2(C,K) : K ∈ A}

is a segment.

Σ∞

Σ
2

C
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Conclusion and Generalization

The following results is mainly due to J. Lambolley and A.
Novruzi. Let

J(K) :=

∫ 2π

0

G(h, h′) dθ

a general functional that we want to maximize.

Note: J.L. and A.N. worked with the inverse of the polar coordinate
instead of the support function.
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Conclusion and Generalization

The following results is mainly due to J. Lambolley and A.
Novruzi. Let

J(K) :=

∫ 2π

0

G(h, h′) dθ

a general functional that we want to maximize.

Note: J.L. and A.N. worked with the inverse of the polar coordinate
instead of the support function.

We have the general result:

G is convex in h′ =⇒ every (local) maximizer is a polygon.

Benasque August 26, 2009 – p. 18/18


	Introduction
	Introduction
	Introduction
	Introduction

	The farthest convex set
	The farthest convex set

	The support function(1)
	The support function(1)
	The support function(1)

	The support function(2)
	The support function(2)

	Examples
	Examples

	Support function and distances
	A geometric inequality
	A geometric inequality

	Idea of the proof
	Idea of the proof
	Idea of the proof
	Idea of the proof
	Idea of the proof

	The farthest convex set (Hausdorff)
	For the $L^2$ distance
	For the $L^2$ distance

	A general result
	A general result

	The optimality condition (1)
	The optimality condition (1)

	The optimality condition (2)
	Sketch of the proof of the main theorem
	Sketch of the proof of the main theorem

	Sketch of the proof (2)
	Sketch of the proof (2)

	The farthest convex set ($L^2$ distance)
	Conclusion and Generalization
	Conclusion and Generalization


