
An evolution method for image restorationRobert Aar and Jos�e Luis Calder�onUniversity of Puerto Rio, Mayag�uezAbstratA pre-proessing step in image restoration onsists of smoothingthe image in order to redue the noise. Regarding the grey-sale im-age as a mapping from a plane region to the unit interval (where theintensity of eah pixel is a number ranging from zero to one), the evo-lution approah is to take the raw image as initial data, then solve,for small time, a ertain partial di�erential equation. We analyse theproperties of the Darboux operator to this e�et; it is a hyperbolioperator, hene preserves disontinuities and edges, yet has interme-diate smoothing properties whih it shares with the traditional lineardi�usion methods (\low-pass �lters" in the Engineering literature).1 IntrodutionImage proessing, the treatment of aquired images, has now beome an ex-tensive �eld of study. In the mathematial model, we assume that an imageis a funtion over a ertain domain, the frame, taking values in a ertainrange. In the ase of grey-sale intensity image, the range is the interval[0; 1℄. For stohasti models, replae single funtion by stohasti proess (or\random �eld"). Good introdutions to the �eld of mathematial image pro-essing are [AK02℄, [CS05℄. One of the tasks involved is image restoration,whih typially onsists of trying to diminish noise or blur imposed on theimage. These two phenomena are usually distint; blur is a systemati andrepeatable proess, imposed by the optial instrument, and typially mod-elled by onvolution by a ertain kernel. Noise is the e�et of random naturalphenomena.One of the reent development in image denoising has been the use ofPDE (partial di�erential equations) methods; we regard the aquired image1



as the initial value for some initial-value problem assoiated with a partialdi�erential equation, and we generate from it a time sequene of images,where time plays the role of an arti�ial parameter. For instane, solving theheat equation where the \dirty image" plays the role of initial data, is verye�etive at reduing the utuations due to random noise, but sine the heatoperator (onvolution by the heat kernel) has isotropi e�et, this not onlyredues noise, but also blurs and erases the edges whih make for the sharp-ness of the image. A �x around this is to use anisotropi di�usion; see [CS05℄,[AK02℄, [tHR94℄. For an exellent survey of the sope and appliability ofPDE methods, see also [LAM93℄.A desirable feature then, of a PDE method, is to have some smoothingproperty. Before we ontinue, let us mention expliitly the models of noisewhih we use in our numerial experiments:1. Gaussian noise is a �eld of pointwise random utuations, with Gaus-sian probability density funtion, eah having zero mean, ommon vari-ane and satisfying ertain tehnial assumptions of isotropy of thespatial orrelation of utuations. In this model, the noise is additive:u(x) = �u(x) + n(x)where �u is the ideal image and n is the noise.2. Spekle noise uses the same model, but in a multipliative way:u(x) = �u(x)(1 + n(x))3. Salt-and-pepper noise models the appearane of random grains on thetelevision sreens of time past, and onsists of randomly oloring somedots on the image in blak or white, aording to a ertain density:u(x) = (1� s(x))�u(x) + s(x)(x)where both s(x) and (x) are random variables taking the value 0 or 1.This work was inspired by the artile [Ki96℄, whih lists ertain results, butdoes not show the numerial experiments.
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2 The Euler-Poisson-Darboux equationThe partial di�erential equationutt + �t ut ��u = 0 (1)arises in solving the wave equation in higher dimensions (with � = n� 1 if nis the dimension of spae) and is referred to, in the literature, variously as theEuler-Poisson-Darboux equation ([DH53℄, [Wei55℄, [Joh55℄) or the Darbouxequation ([CH62℄). We will name it thereafter the Darboux equation (keepingto the observation asribed, maybe to Lagrange, that objets in mathematisare often named after the �rst person who redisovers them after Euler. Inthis ase, it would be the seond). We will allow � to have values other thann � 1, but in the sope of this work, our numerial experiments use mostly� = n� 1 = 2.2.1 Equation over RnOver the entire spae, the assoiated initial-value problem to (1) onsists ofspeifying the value f(x) of u at time zero, and the ompatibility onditionut = 0 at time zero (note that (1) is singular at the initial time). It is well-known (see [CH62℄) that, for � = n � 1, the solution to the initial-valueproblem onsists of taking for u(t; x) the spherial mean of f over the sphereof entre x and radius t. In [DH53℄, Diaz and Weinberger generalise thisresult to other values of � in two steps:- For integer � > n�1, they show, using the desent method of Hadamard,that the solution is still obtained by spherial means, or, more desrip-tively, ylindrial means over �� (n� 1) dimensional ylinders.- By a ontinuation argument, they extend this formula to the wholeomplex plane, exluding negative odd value of �.Two remarks:1) Uniqueness hold for � with nonegative real part, but not otherwise.2) By replaing t by �t, we see that the equation is reversible.3



2.2 Equation over a retangular domainOne surmises that, in the ase of the initial-value problem over a boundeddomain with periodi boundary onditions, one should derive similar resultsusing elementary means. This turns out to be indeed the ase. By imposingperiodi boundary onditions over, say, the square [0; 2�℄ � [0; 2�℄, we lookfor solutions of the formu(t; x) = Xp2Z2 p(t)eip�x; �p = �pwhere the ondition on the oeÆients expresses that u is real-valued. Trans-ferred to the oeÆients of the Fourier expansion, the Darboux equationbeomes t00(t) + �0(t) + jpj2t(t) = 0where we suppressed the dependene of (t) on the mode p. The Fr�beniusmethod then onsists, for eah p belonging to the integer lattie, of lookingfor  of the form (t) = 1Xn=0 antr+n; a0 6= 0:Taking into aount the initial-value onditions, and onsidering the resultingreurrene relations, we obtain that:- For � > 0, there is an unique solution (the ase � = 0 may be omitted,sine it orresponds to the wave equation).- For real, noninteger � < 0, there are in general two linearly independentsolutions. If � is a negative integer, then there are in�nitely manysolutions if � is even, and, in general, no solutions if � is odd.- A result mentioned in [Ki96℄ is that, if f(x) 2 Hs(R2), then, foreah positive time, u(t; x) 2 Hs+1=2(R2). In the ontext of the periodiboundary-value problem, one obtains this result by observing that (1) ifof Bessel type, and by using the haraterisation ofHsp(R2) (spae of pe-riodi Hs funtions) via the Fourier transform: if v(x) = Pp2Z2 peip�x,then v 2 Hs(R2), Xp2Z2(jpj2)s=2p 2 l2and the fat that J0(tj�j) deays at in�nity like j�j�1=2.4



It is this intermediate smoothing property whih lends this method its in-terest. Of ourse, we must keep in mind that the sale of spaes Hs, whihallows easy analysis of smoothing, is not the natural one where to onsiderimages, along with their edges and disontinuity types. In this sale, theadequate spae where to hose f would be H0. On the other hand, studyingthe smoothing properties of the Darboux operator in the spae BV is beyondthe sope of the present work.3 Numerial resultsFor a more omplete aount of the numerial experiments, we refer to[Cal09℄. In this summary, we merely highlight some of the onlusions, andstate some additional remarks.The results we show use two images, one syntheti, ontaining high-levelinformation, the other, ropped from a photograph.
Image 1
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Image 2
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180 Figure 2:3.1 Disrete shemeWe used an expliit �nite-di�erene method, hoosing uniform spae andtime steps �x = �y and �t. The �rst time derivative is approximated by a5



single-step formula unt = un � un�1�twhih is of order of auray O(�t), and the seond time derivative byuntt = un � 2un�1 + un�2�t2 ;and the Laplaian of u, by the standard four-point disrete Laplaian. Solv-ing the periodi boundary-value problem makes it easy to deal with theboundary. An analysis of stability indiates that the sheme is stable if� < 0:5, � being the ratio �t=�x. One drawbak of this simple sheme isthat it does not stritly preserve the range of the image: the weights involvedin omputing un from un�1 and un�2 are aÆne, but not onvex, as some arenegative. Sine we only use the method for small time, the e�et is notsigni�ant.Of onern is the e�et of the hoie of time step over the value of u ata ertain time. Or, put another way, while the ideal image is over the unitsquare, the atual instane of the image is as a matrix of pixels, the size ofwhih is determined by the resolution. The value of u(t) at time t shoulddepend essentially on t, but not on the number of time-steps required toreah t. The following tables list, as a �rst olumn, the amount of noise (attime zero) in the L1 norm, then, the disrepany between u and ~u at a hosen�xed time, with u orresponding to � = 0:4 and ~u orresponding to � = 0:1.The di�erene in u due to di�erent values of � is seen, at least, not to exeedthe size of the noise. In the remaining experiments, we hose � = 0:2.Table 1: Image 1noise ju� ~uj1 ju� ~uj1spekle 0.09 0.02gaussian 0.05 0.01salt & pepper 0.03 0.02no noise 0.01 0.14
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Table 2: Image 2noise ju� ~uj1 ju� ~uj1spekle 0.08 0.01gaussian 0.08 0.01salt & pepper 0.02 0.01no noise 0.007 0.073.2 Quantifying denoisingA measure used in signal proessing, for signal denoising or ompression,is the \signal-to-noise ratio", and the losely related \peak signal-to-noiseratio". The aforementioned are usually de�ned using the squared-error, butit is possible to de�ne a related measure relying on the L1 error. We hoosethe following: SNR = �100 log(ju� �uj1);where u is the restored image, and �u the lean image. Of ourse, in pratiethis quantity is unknown (for lak of knowing �u), but it is still of interest tohek whether the empirial measure in question agrees with subjetive per-eption in the ase of images. For ertain iterations of the Darboux proess,we list the orresponding SNR. In order better to ompare, we used noisedensity and variane respetively of 0.08 and 0.02 for spekle and Gaussiannoise. For image 1, we obtain:Table 3: Image 1, spekle noiseiteration 2 3 4 5 6 7SNR 211.32 212.28 212.97 213.18 212.77 211.65Table 4: Image 1, gaussian noiseiteration 2 3 4 5 6 7SNR 259.80 260.37 260.20 259.06 256.79 253.37We then show side-by-side the images orresponding to highest SNR, andbest pereived �t ( �gures 3, 4, 5, 6).7



speckle, PSNR = 213.18
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speckle, PSNR = 212.77
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200 Figure 4:For image 2, we used spekle noise only. In the ase of this image withlower high-level information ontent, it is our impression that, while the SNRseems roughly to orrelate with pereption, the agreement is by no meansexat (�gures 7, 8, 9, 10).Table 5: Image 2, spekle noiseiteration 4 8 9 10 11 12 13SNR 242.56 283.54 290.13 292.12 289.96 285.05 279.013.3 Comparison with �ltersA traditional denoising method in engineering involves the use of �lters.Filtering an image onsists in applying to it a loal averaging-like operator,de�ned by a �xed mask of a ertain size. The smaller the size, the more loalthe operator. If the e�et of the �lter is true averaging, then this amountto onvolution by a ertain kernel. It is a linear operation, and generalisesin a ertain sense solving the heat equation. The e�et of suh a �lter isto diminish the noise (by dereasing random osillations) but also to blurseparation between image regions, akin to what isotropi di�usion does. A8



gaussian, PSNR = 260.37
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gaussian, PSNR = 256.79
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200 Figure 6:�x around this is to use a \median �lter", whih is nonlinear, and usesorder statistis instead of onvolution. It has the advantage of preservingboundaries between solid segments (i.e., regions of nonzero measure), butnot thin urves. As a ontrast to the e�et of evolving by the Darbouxproess, we show the e�et of using �lters to both images. For both �lters,we hose masks of size 3 � 3, having the smallest support; the hoie oflarger masks would further aggravate blurring. It must be mentioned thatanother di�erene between a PDE based method suh as this, and �ltermethods, is that while the �lter is applied to get a single restored image, andis an irreversible proedure, the evolution method generates a sequene ofsmoothed images along the time sale. See �gures 11, 12, 13, 14, 15, 16, 17and 18.3.4 Other hoies of parameterAs mentioned earlier, negative values of the parameter � yield multiple so-lutions of the Darboux equation. This is not neessarily the ase for thedisretisation, but it is of interest to ompare the e�et. We show a sampleresult for � = �0:2, starting from a lean image: �gures 19, 20.As an be inferred from the analysis in [DH53℄, the higher the value of �,the more smoothing the e�et of the solution operator. Extensive tests for9



speckle, PSNR = 290
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speckle, PSNR = 292
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180 Figure 8: 10 iterationsdi�erent values of � are beyond the sope of this work, but we show belowsome sample results, also starting from a lean image. See �gures 21, 22, 23,24. The reversibility property is of potential use. Beause of the singularity ofthe Darboux equation at time zero, we annot expet the disretised methodto revert all the way bak to the initial time. We show the result of runninga ertain number of iterations forward, then baktraking: �gures 25, 26However, by inreasing the value of �, we obtain a striking e�et, ofpotential use in edge enhanement: see �gure 27.Aknowledgement We thank Prof. K. R�ozga for pointing out the resultabout deay of the Bessel funtion of order zero, and its role in proving thesmoothing property.Referenes[AK02℄ G. Aubert and P. Kornprobst. Mathematial problems in imageproessing. Springer-Verlag, 2002.[Cal09℄ J.L. Calder�on. Hyperboli smoothing for digital image restoration(in Spanish). Master's thesis, University of Puerto Rio, 2009.10



speckle, PSNR = 290
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speckle, PSNR = 285
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180 Figure 10: 12 iterations[CH62℄ R. Courant and D. Hilbert. Methods of mathematial physis, vol-ume II. Intersiene, 1962.[CS05℄ T.F. Chan and J. Shen. Image proessing and analysis. SIAM,2005.[DH53℄ J.B. Diaz and H.F.Weinberger. A solution of the singular initialvalue problem for the Euler-Poisson-Darboux equation. Bulletin ofthe AMS, 1953.[Joh55℄ F. John. Plane waves and spherial means applied to partial dif-ferential equations. Intersiene, 1955.[Ki96℄ S. Kihenassamy. Nonlinear di�usions and hyperboli smoothingfor edge enhanement. In ICAOS '96, number 219 in LNCIS, pages119{124. Springer-Verlag, 1996.[LAM93℄ P.L. Lions L. Alvarez, F. Guihard and J.M. Morel. Axioms andfundamental equations of image proessing. Arh. Rational Me-hanis, 123:199{257, 1993.[tHR94℄ B.M. ter Haar Romeny, editor. Geometry-driven di�usion in om-puter vision. Kluwer, 1994.11



speckle noise, average filtre
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speckle noise, median filtre
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180 Figure 12:[Wei55℄ A. Weinstein. The generalized radiation problem and the Euler-Poisson-Darboux equation. Summa Brasiliensis, 3, 1955.
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gaussian noise, average filtre
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gaussian noise, median filtre
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speckle noise, average filtre
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speckle noise, median filtre
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gaussian noise, average filtre
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gaussian noise, median filtre
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after 10 iterations, α = −0.2
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after 30 iterations, α = −0.2
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after 10 iterations, α = 4
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after 30 iterations, α = 4
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after 10 iterations, α = 4
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after 30 iterations, α = 4
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30 iterations forward and 20 back, α = 4
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30 iterations forward and 20 back, α = 4
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15 iterations forward and 10 back, alpha = 4
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