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Motivation: understand how optimal transport with economy of

scales leads to optimal channel networks

• Stationary formulation (Monge and Kantorovich):

inf
{

F(λ) , − div λ = µ+ − µ−
}

(λ transport flux measure)

• Dynamic formulation (Brenier and Benamou):

inf

{
∫

T

0

F ′(V ρ, ρ) dt ,
∂ρ

∂t
+ div(V ρ) = 0 , ρ(0) = µ+ , ρ(T ) = µ−

}

(ρ(t) mass density at time t , V the speed)
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Goals

• Two main mathematical issues:

1) Functionals F for which optimal measures λ are one dimensional ?

2) Functionals F ′ for which optimal ρ(t) are discrete measures ?

• A model case hase been widely studied

F(λ) =

∫

S

θα dH1 if λ = θ τS H1 S (+∞ otherwise) (1)

where 0 ≤ α < 1.

Remark: α = 1 gives Monge-Kantorovich problem (the one-rectifiability constraint

dissappears after relaxation)

• J.R Banavar and All.: Universality classes of optimal channel networks, Science,

1996

• Irrigation problems: J.M. Morel, V.Caselles, M. Bernot (probability on curves)

• Q. Xia, B. Hardt: Wα Monge distance (via completion)

• G.Buttazzo, F. Santanbroggio, E.Stepanov, GMT point of view
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Observation in the 2D-case

Connection with Munford-Shah image segmentation problem holds for:

d = 2 (static case) or for d = 1 (dynamic case)

Let:

• Ω ⊂ R
2 bounded with smooth boundary Γ

• µ+, µ− densities on Γ

• u0 : Γ → R is a primitive of f := µ+ − µ−

Then for λ ∈ M(R2; R2) supported in Ω

(i) − div λ = f ⇐⇒ ∃ u ∈ BV(Ω) : u = u0 on Γ , λ = (−∂2u, ∂1u) .

(ii) λ = θH1 S ⇐⇒ ∇u = 0 a.e. in Ω \ S , [u] = θ on S.

Thus inf{Fα(λ) − div λ = f , sptλ ⊂ Ω} is equivalent to:

inf

{
∫

Su

[u]α dH1 u ∈ SBV(Ω) , u = u0 on Γ, ∇u = 0 a.e.

}

Remark: Truncation of u (piecewise constant) ⇔ Removing loops in λ.
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Mass transport, economy of scales and speed

• Monge transport G. Monge was motivated by transporting earth from an area

to an other one, “the price of the transport of a single molecule being”

(i) “proportional to its weight and” (ii) “to the distance that one makes it covering”

hence the price of the total transport is proportional to the sum of the products of

the molecules each multiplied by the distance covered.

Remark: Assumption (i) says that many molecules can be transported in a single

“convoy”, the cost of which is proportional to the number of transported molecules.

Then molecules follow a straight line (with a constant speed).

• Economy of scales In contrast the marginal cost of the transport decreases

when the transported mass increases. We will assume that ”the price of the

transport of one molecule” is a concave function g(m) of ”its weight” m ( typically

g(m) = mα with 0 < α < 1). This changes drastically the structure of optimal

solutions: it is economic to group the transported masses as long as possible : each

“molecule” will not follow a straigth line any more and the optimal strategy has to

be described in a time-space setting.
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Mass transport, economy of scales and speed

• Speed of molecules In general, transport at high speed is much more expensive.

We admit that “the price of the transport of one molecule” is a convex function f of

the velocity V , typically:

f(V ) = A + BV + C V p with p > 1 , A , B and C ≥ 0.

- f(0) = A > 0 means that “parking” has a cost (which is not absurd from the

economical point of view).

- B = f ′(0) > 0 in contrast favors stationary masses.

- α = 1 and A = B = 0 , C = 1 yields time formulation for p Wasserstein (see

Benamou-Brenier)

- α < 1 , p = 1 and A = B = 0 , C = 1 yields time formulation for for the

irrigation problem studied by Xia and Morel.
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Example 1

Consider two masses M > 0 and m > 0 located at time 0 at the same point x0 to

be transported respectively to points x1 and x2 at time T = 1. In other words

ρ(0) = µ+ = (M + m)δx0
and ρ(1) = µ− = Mδx1

+ mδx2
.

We look only for two phases optimal dynamics:

a) For [0, tc] the two masses are transported together from x0 toward a point xc

following a kinematic law y0(t).

b) For t ∈ [tc, 1], they are transported separately from xc toward x1 and x2 following

respectively the kinematic laws y1(t) and y2(t).

The cost of such a transport is:

∫ tc

0

f(‖ẏ0(t)‖)g(M +m) dt+

∫ 1

tc

f(‖ẏ1(t)‖)g(M) dt++

∫ 1

tc

f(‖ẏ2(t)‖)g(m) dt (2)

to be minimized with respect to the junction time and place (tc, xc) ∈ R × R
d and

the kinematic laws y0(t), y1(t) and y2(t) which are subjected to the constraints

y0(0) = x0, y0(tc) = y1(tc) = y2(tc) = xc, y1(1) = x1, y2(1) = x2. (3)

By the convexity of f , the velocities of the different convoys are constant.
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Example 1

Thus by (2)(3), we have to minimize

F = tc g(M + m) f

(

‖xc − x0‖

tc

)

+ (1 − tc) g(M) f

(

‖xc − x1‖

1 − tc

)

+

(1 − tc) g(m) f(

(

‖xc − x2‖

1 − tc

)

with respect to (tc, xc)

We draw a time-space representation of the optimal transport for

d = 1 , M = 1 , m = 0.5 , x0 = 0 , x1 = 1 , x2 = 0.5

showing the effects of the parameters α, A, B, p

( g and f are defined by g(m) = mα and f(V ) = A + BV + V p)
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Numerics for example 1

Figure 1: Optimal transport depends on p, α, A and B.
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Example 2: Transport of a line density to a Dirac

Figure 2: Auto-similar construction of optimal transport p = 2, α = 0.9
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Test for α closed to 1

Figure 3: Transport of a line density to a Dirac, p = 6, α = 0.9
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OUTLINE

F(λ) :=

∫

S

g(θ) h(τS) dH1

where:

• S is a 1-rectifiable subset of R
d, τS a unit tangent vector

• g : R
+ → [0, +∞] is concave, monotone increasing and g′(0+) = +∞ .

• h : R
d → [0, +∞] is convex l.s.c., 1-homogeneous

Note that no lower semicontinuity result is known (except in dimension 2 via

Munford-Shah functional). We will mix different techniques

1- Removing loops

2- Probability on curves and Smirnov decomposition of transport measures.

3- Intensity function and 1-rectifiability Theorem

4- Tightness results and lower semicontinuity of F .

5- Application to dynamic formulations

6- Optimality conditions and approximation
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1- Transport and loops

• Transport measures: A transport on R
d is a vector measure λ ∈ M(Rd, Rd)

such that div λ = µ+ − µ− ∈ M(Rd) (thus
∫

µ+ =
∫

µ−).

It is called 1-rectifiable if of the kind λ = θ τS H1 S (for a suitable 1-rectifiable

subset S)

The weak convergence of transports is defined by (Flat norm convergence)

λn ⇀ λ ⇐⇒ λn
∗
⇀ λ , div λn

∗
⇀ div λ .

• Sub-transport: λ′ is a sub-transport of λ if there exists suitable Borel functions:

ξ, α, β : R
d → [0, 1] such that

λ′ = ξ λ , div(λ′) = α µ+ − β µ−

• Loops: It is a sub-transport sucht that div λ′ = 0 ( i.e. α = β = 0)

OBSERVATION: As g monotone ց , we have

For all ξ : R
d → [0, 1], F(ξλ) ≤ F(λ) . (4)
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1.2 Sub- transports and loops
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Figure 4: Removing loops: λ, ξ and decomposition of λ
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1.3 Removing loops

If loops are allowed, no hope for coerciveness

(∗) F(λn) ≤ C , div λn = µ+ − µ− ⇒ sup
n

∫

|λn| < +∞ .

We will therefore remove loops by using :

LEMMA 1: Given a transport measure λ, there exists a (non unique) Borel

function ξ : R
d → [0, 1] such that: ξ λ is loop free and div(1 − ξ)λ = 0

Proof: We consider a minimizer for problem:

inf

{
∫

ξ |λ| : ξ ∈ L∞
|λ|(R

d; [0, 1]) , div(1 − ξ)λ = 0

}

.

The property (*) will be reached for loop-free 1-rectifiable transports thanks to:

LEMMA 2: Assume that λ = θ τS H1 S is loop-free and satisfies

div λ = µ+ − µ− where
∫

µ+ =
∫

µ− = M . Then: 0 ≤ θ ≤ M

Then by the concavity of g: g(θ) ≥ θ
g(M)

M
.
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2- Space of curves and probabilities

We assume that transport takes place in a convex compact subset Ω.

• XΩ will denote the space of equivalent classes of Lipschitz oriented curves

γ : [0, 1] 7→ Ω

where γ ∼ γ̃ means that γ̃ = γ ◦ θ for a strictly increasing bijection of [0, 1].

• XΩ is a complete separable metric space (see Buttazzo) with

d(γ1, γ2) := inf
θ

sup
t∈[0,1]

|γ1(t) − γ2(θ(t))| ,

and convergence in (XΩ, d) implies Hausdorff convergence of the images.

• XΩ is not locally compact but for every l > 0 the following subset is compact

Kl := {γ : L(γ) ≤ l} , L(γ) :=

∫ 1

0

|γ̇(t)| dt .

• To every γ ∈ XΩ, we can associate a line transport measure (supported in Ω)

< λγ , φ > :=

∫ 1

0

φ(γ(t)) · γ̇(t) dt , div λγ = δγ(0) − δγ(1).

Remark: The map γ ∈ XΩ 7→ λγ ∈ M(Ω; Rd) is not continuous (no control on γ̇).
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2.2 Representation of transports through measures on XΩ

To every finite positive Borel measures p on XΩ, we may associate the weighted

transport denoted λ(p) ( or
∫

λγ p(dγ)) defined by

< λ(p), φ > :=

∫

XΩ

(
∫ 1

0

φ(γ(t)) · γ̇(t) dt

)

p(dγ). (5)

div(λ(p)) = e♯
0(p) − e♯

1(p) ,

where for i ∈ {0, 1}, e♯
i(p) denotes the image of p by the continuous map

ei : γ 7→ γ(i).

Notion of complete decomposition: we say that the decomposition (5) is

complete (or simply that p is complete) if:

(i) spt (p) ⊂ {γ ∈ XΩ : γ is simple}

(ii)

∫

R
d

|λ(p)| =

∫

XΩ

|λγ | p(dγ) =

∫

XΩ

L(γ) p(dγ)

(iii)

∫

R
d

| div λ(p)| =

∫

XΩ

| div λγ | p(dγ) = 2

∫

XΩ

p(dγ)
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2.3 Example of complete decompositions

Remark The following localized inequalities (always true) become equalities

|λ(p)| ≤

∫

XΩ

|λγ | p(dγ) , | div(λ(p))| ≤ e♯
0(p) + e♯

1(p).

A

B

C

D

I J

Figure 5: A transport to be decomposed
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Figure 6: Two complete decompositions
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2.4 Reformulation of optimal transport problem

It is tempting to reformulate the optimal transport problem as

inf
{

F(λ(p)) : p ∈ M+(XΩ) , e♯
0(p) = µ+, e♯

1(p) = µ−
}

.

Several mathematical questions arise:

1) Are all transports of the form λ(p) and with p complete ??

Answer: YES if λ is loop-free (consequence of Smirnov Thm)

2) Tightness: does F(λ(pn)) ≤ C imply that pn is tight ?

Answer: Yes but only if pn is complete

3) Does pn ⇀ p imply that λ(pn) ⇀ λ(p) ?

Answer: No in general but OK if L(γ)pn(dγ) is tight !

4) Alternative expression for G(p) := F(λ(p))

Needs to check that G(p) < +∞ ⇒ λ(p) is 1- rectifiable

5) Lower semicontinity of G ?

OK if g(t)/t is monotone decreasing
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2.5 Smirnov decomposition

THM. Let µ+, µ− be two positive measures ( with
∫

µ+ =
∫

µ−).

Let λ ∈ M(Ω; Rd) be a transport such that div λ = µ+ − µ−.

If λ is loop-free , then it admits a complete decomposition λ = λ(p) for a suitable

p ∈ M+(XΩ).

Futhermore, we have µ+ = e♯
0(p) , µ− = e♯

1(p) so that
∫

µ+ =

∫

µ− =

∫

XΩ

p(dγ)

Proof By SMIRNOV , any transport measure λ can be decomposed in the form:

λ = λ(p) + λ0 , where:

i) div λ0 = 0 ( λ0 accounts the loops)

ii)
∫

|λ| =
∫

|λ(p)| +
∫

|λ0| =
∫

L(γ) p(dγ) +
∫

|λ0|

iii)
∫

| div λ| =
∫

| div(λ(p))| = 2p(XΩ)

The first equality in ii) and the strict convexity of Euclidean norm implies that

λ(p) = ξλ for ξ ∈ [0, 1]. As λ is loop free ξ = 1 and λ0 = 0.
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3. Intensity functions and 1-rectifiability Theorem

Given p ∈ M+(XΩ), we define θp(x) (simple intensity) and ip(x) (total intensity)

the Borel functions:

θp(x) := p({x ∈ γ([0, 1])} =

∫

XΩ

1{x∈Im(γ)} p(dγ) ,

ip(x) :=

∫

XΩ

♯({t ∈ [0, 1] : γ(t) = x}) p(dγ) .

• ip(x) ≥ θp(x) but θp(x) = 0 ⇒ ip(x) = 0 !

• θp(x) ≤ p(XΩ) and by Smirnov, we deduce Lemma 2.

Lemma 3 The function (x, p) ∈ Ω ×M+(XΩ) 7→ θp(x) is upper

semicontinuous.

We introduce also the intensity measure

µp(B) :=

∫

XΩ

|λγ |(B) p(dγ) =

∫

XΩ

(

∫

γ−1(B)

|γ̇(t)| dt

)

p(dγ).

Then
∫

µp =
∫

L(γ) p(dγ) ( ≥
∫

|λ(p)|) with equality if p is complete).
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3.2 The functional G(p)

We set β(t) :=
g(t

t
and then

G(p) :=

∫

XΩ

(
∫ 1

0

β(θp(γ(t))) h(γ̇(t)) dt

)

p(dγ) .

Justification If p is supported on a simple curve γ0 i.e. p = θ δγ0
, then denoting

S = γ0([0, 1]), we obtain θp = ip = θ on S and

λ(p) = θ τS H1 S , G(p) = θ

∫ 1

0

β(θ) h(γ̇0(t)) =

∫

S

g(θ) h(τS) dH1 = F(λ(p)) .

LEMMA 4. Assume that g is concave ր and that h is convex l.s.c.

postively one-homogeneous. Then the functional p ∈ M+(XΩ) 7→ G(p) is

lower semicontinous (for the weak convergence of measures)
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3.3 Rectifiability result

LEMMA 5 (1-rectifiability) Let p ∈ M+(XΩ) such that: µp(Ω) < +∞ and

ip > 0 µp a.e. . Then there exists a 1-rectifiable subset S such that:

µp = ip(x) H1 S .

COROLLARY Assume that β(t) ր +∞ as t ց 0 (with h coercive). Then

G(p) < +∞ ⇒ λ(p) = θ τS H1 S , with S rectifiable , 0 ≤ θ(x) ≤ ip(x) on S.

Proof: Observe that x ∈ γ([0, 1]) ⇒ lim inf
ε→0

1

2ε

∫

γ−1(B(x,ε)

|γ̇(t)| dt ≥ 1 .

By Fatou lim inf
ε→0

µp(B(x, ε))

2ε
≥ θp(x). Let Sk := {θp > 1/k}.

Then H1(Sk) < +∞ and ∪Sk = {θp > 0} = S ∪ S′ with S one-rectifiable.

µp has no contribution on the purely unrectifiable part S′. Appying Fubini with

H1 S(dx) ⊗ p(dγ) leads to µp = ip H1 S.

Eventually as |λ(p)| ≤ µp, λ(p) = ξ µp where ξ parallel to τS by the divergence

condition.
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3.4 Relation between F and G

THM Let p ∈ M+(XΩ) a finite measure. Assume that β(t) = g(t)/t is

nonincreasing with β′(0+) = +∞. Then

(i) F(λ(p)) ≤ G(p) for every p

(ii) F(λ(p)) = G(p) if p is complete

Hint: G(p) < +∞ implies that θp > 0 on the support of µp. Then we apply the

rectifiability result to λ(p).

COROLLARY As every transport can be substituted with another one loop-free

with lower energy (and also with complete decomposition):

inf
{

F(λ) : div λ = µ+ − µ−
}

= inf
{

G(p) : e♯
0(p) = µ+ , e♯

1(p) = µ−
}

,

Argmin F = {λ(p) : p ∈ Argmin G}

STILL NEEDS TO PROVE CONVERGENCE OF MINIMIZING SEQUENCES (pn)

for G in M+(XΩ) !
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4. Tightness results and lower semicontinuity of F

We already know that loop-free minimizing sequence of transports are uniformly

bounded in variation hence weakly compact in M(Ω; Rd).

As regards minimizing sequences (pn) in M+(XΩ), we need to check the

Prokhorov’s tightness criterium.

• Complete minimizing (pn) are precompact

Assume that
∫

µ+ =
∫

µ− = 1. If pn is complete, θpn
≤ 1 (by Lemma 2) and

g(θpn
) ≥ g(1) θ (by the concavity of g). Thus

G(pn) ≥ g(1)

∫

XΩ

L(γ) pn(dγ) = g(1)

∫

XΩ

µpn
.

For every l, the compact set Kl = {L(γ) > l} satisfies pn(Kl) ≤ C l.

⇒ EXISTENCE OF SOLUTIONS

Argmin G is non empty (by the l.s.c. of G)

Argmin F is non empty (by the equivalence between F and G)

Remark If g is stricly ց, then optimal transports are loop-free.

PDE, optimal design and numerics, Benasque, 2009 23/32



4.2 Reinforced compactness

• Why need reinforced compactness ?

It is natural to ask wether or not

pn ⇀ p ⇒ λ(pn) ⇀ λ(pn)

The answer is:

NO if we know merely that supn

∫

L(γ) pn(dγ) < +∞

YES if the sequence {L(γ) pn} is tight.

Hint: The map Λ : γ ∈ XΩ 7→ λγ ∈ M(Ω; Rd) is not continuous.

Ex.: Let pn := 1
n+1 δγn

, γn(t) := (1 + n−1) exp(2iπnt). Then pn ⇀ 0 whereas

λ(pn) ⇀ λγ1
(factor (1 + n−1) in order to have simple curves)

However Λ is continuous on all compact Kl and the contribution from XΩ \Kl is

controlled by
∫

XΩ\Kl

‖λγ‖ pn(dγ)
(

=

∫

XΩ\Kl

L(γ) pn(dγ)
)
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4.3 Sub-transport estimate

• More on sub-transports

Let p ∈ M+(XΩ) and E a Borel subset. Then λ(p E) is a sub-transport of λ(p).

Thus as g is non decreasing: F(λ(p E) ≤ F(λ). Besides if p is complete, so is

p E and θ
p E

≤ p(E) (by Lemma 2). Now exploiting β ց

Lemma 6: For every Borel subset E ⊂ XΩ and every complete

p ∈ M+(XΩ), there holds:

G(p) ≥ G(pE) ≥ hmin β(p(E))

∫

E

L(γ) p(dγ).

Applying to E = Kl, we get

(∗∗) sup
n

G(pn) < +∞ ⇒ {L(γ) pn} tight ⇒ λ(pn) ⇀ λ(p) whenever pn ⇀ p
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4.4 Lower semicontinuity of F

• A weak statement for the l.s.c of F

We keep the previous assumptions on g, h.

THM Let (λn) be a sequence of loop-free transport measures such that:

λn ⇀ λ , div λn ⇀ div λ .

Then lim infn F(λn) ≥ F(λ) .

Proof There exists a sequence of complete measures pn such that λn = λ(pn). As

div λn is upperbounded in variation so is pn and we may assume pn → p. Then, as

we know that G is l.s.c.:

lim inf F(λn) = lim inf G(pn) ≥ G(p) ≥ F(λ(p)).

By the implication (**): λ(p) coincides with λ (at least when F(λn) is bounded)
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4.5 A case excluding loops

Let Σ := {z ∈ Sd−1 : h(z) < +∞} and assume

(∗ ∗ ∗) ∃z∗ ∈ Sd−1 : z∗ · z < 0 ∀z ∈ Σ

Then F(λ) < +∞ implies that λ has no loop

Proof A transport λ = θ τS H1 S with F(λ) < +∞ satisfies τS ∈ Σ a.e. on S.

Thus
∫

S
θ τS · z∗dH1 < 0 : incompatible with div λ = 0 which forces

∫

λ = 0.

CONCLUSION: Under (***), F is lower semicontinuous

Model example:

• z ∈ R
d substituted with (z, t) ∈ R

d × R+ (space and time).

• f : R
d → R+ is convex l.s.c. (function of the speed)

h(z, t) =















t f( z
t
) if t > 0

f∞(z) if t = 0

+∞ if t < 0

Then (***) holds for p > 1. If p = 1, loops can occur in slices of time {t∗} × R
d

(meaning that the speed in the loop is infinite !)
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5. Application to dynamic formulations

• The transport of discrete measures is described at time t ∈ [0, T ] by:

ρt =
∑

i

ci(t) δxi(t) (fonction from [0, T ] to M+(Ω))

σt =
∑

i

ci(t) ẋi(t) δxi(t) (“momentum ”function from [0, T ] to M+(Ω; Rd))

• We associate the measure λ = (σ, ρ) ∈ M(Ω × R; Rd+1) by setting:

< ρ, ϕ(x, t) >=

∫ T

0

(

∫

Ω

ϕ(x, t) ρt(dx)) dt , < σ, φ(x, t) >=

∫ T

0

(

∫

Ω

φ(x, t)·σt(dx)) dt.

• As far as finite speeds are considered: σ ≪ ρ and V (x, t) denotes the

Radon-Nikodym density. The kinematic contraints (including the one at the

junctions) and boundary conditions ρ(0) = µ+ , ρ(T ) = µ− reduce to:

(dyn)
∂ρ

∂t
+ divx(ρ V ) = µ+ ⊗ δ0 − µ− ⊗ δT as distributions on R

d+1

Remark In fact under (dyn) and condition
∫

R
d+1 |V | ρ(dxdt) < +∞, ρ is of the

form
∫ T

0
ρt(dx) ⊗ dt where the map t 7→ ρt ∈ M(Rd) is continuous (weak topology)

(see Ambrosio).
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5.2 Parametrized curves in space-time

Let us argue on a situation with finitely many masses and junctions points (the

number of points may change in the process !) ρ(t) =
∑

ci(t) δxi(t).

• Each trajectory (xi(t), t) : t ∈ [0, T | can be seen as an oriented curve

γi : s ∈ [0, 1] 7→ Rd+1, with a Lipschitz ր parametrization t = t(s) such that

t(0) = t−i , t(1) = t+i .

• The measure λ = (σ, ρ) is supported on the one dimensional subset

S = ∪iSi , Si = Im(γi) and has the form λ = θτH1
|S

where τ = (τx, τt) is a unit

tangent vector to S with τt > 0.

The ratio
|τx|

τt

represents then the velocity.

• A simple change of variables on the graph Si shows that

∫ t+
i

t
−

i

g(ci(t)) f(ẋi) dt =

∫

Si

f(
τx

τt

)g(ci(t))τtH
1(dx)

so that summing over i, the total cost coincides with F(λ) =
∫

S
h(τ)g(θ) dH1 ,

where θ(x, t) is roughly
∑

{ci(t) : xi(t) = x} and h is the function defined on R
d+1

by: h(τ) := f(
τx

τt

)τt if τt > 0, h(τ) = +∞ otherwise.
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5.3 Reformulation of the problem

We end up with the variational problem:

inf

{

∫ T

0

F ′(V ρ, ρ) dt ,
∂ρ

∂t
+ div(V ρ) = 0 , ρ(0) = µ+ , ρ(T ) = µ−

}

where:

F ′(V ρ, ρ) =

∫

S

f(
τx

τt

)g(θ(x, t))τt dH1 =

∫

S

g(θ) h(τS) dH1.

EXISTENCE follows from the previous section

Remark The fact that σ ≪ ρ is forced if f has superlinear growth. In this case we

know also that loops are also ruled out.

The case f(z) = |z| is more delicate !!
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6. Optimality conditions and approximation

The curve representation allows a very easy derivation of first order optimality

conditions:

Let λ = λ(p) an optimal transport. Recall that p is complete ( θp = ip) and satisfies

e♯
1(p) = µ+ , e♯

0(p) = µ−.

We consider a deformation map: Ψε(x) = x + εV (x) where V (x) is a smooth vector

field such that: V = 0 on sptµ+ ∪ sptµ−.

Then set pε = Ψ♯
ε(p). Notice that for all γ, θpε

(Ψε ◦ γ) = θp(γ), there holds:

0 = lim
ε→0

G(pε) − G(p)

ε
=

∫

XΩ

∫ 1

0

(

β(θp)(γ)
h(γ̇ + ε∇V (x)γ̇) − h(γ̇)

ε

)

dt p(dγ)

=

∫

XΩ

∫ 1

0

(β(θp)(γ(t)) γ̇(t) ⊗∇h(γ)∇V (γ)) dt p(dγ)

=

∫

S

g(θ(x))
τ ⊗∇h(τ)

h(τ)
· ∇V (x) dH1

=⇒ div

(

g(θ)
τ ⊗∇h(τ)

h(τ)
H1 S

)

= 0 .
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6.2 Approximation by viscosity

We consider Stokes flow with small viscosity (ε on a bounded domain Ω ⊂ R
3 and

add a non linear potential V : R
3 → R

+

inf

{
∫

Ω

(V (u) + ε |∇u|2) : div u = µ+ − µ−

}

Choose V (u) := |u|p where 0 ≤ p < 1 (so that it is better to concentrate the flow)

Remark: p = 0 is equivalent to find the optimal shape of the set {u 6= 0}

CONJECTURE: As ε → 0 , the minimizers uε (in H1(Ω; R3)) concentrate on

1-dimensional subsets: uε ⇀ λ (in the sense of measures) where λ solves

inf

{
∫

S

θα dH1 : λ = θ τSH1 S : div λ = µ+ − µ−

}

The scaling law is deduced from the 2D profile equation on a disk Dr:

−∆ϕ + |ϕ|p−2ϕ = cte , ϕ ∈ H1
0 (Dr)

and its asymptotic as r → 0 (see GB, Dubs, Seppecher, CRAS and M3AS (1997))

We obtain

α =
2

3 − p
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