Flux identification problems for conservation laws. A numerical approach

C. Castro (Universidad Politécnica de Madrid)

joint work with E. Zuazua (Basque Center of Applied Mathematics)

Benasque, August 25th, 2009

Statement

Le us consider the 1-d scalar conservation law:

$$\partial_t u + \partial_x (f(u)) = 0, \quad \text{in } \mathbb{R} \times (0, T), u(x, 0) = u^0(x), \quad x \in \mathbb{R}$$
(1)

where the nonlinear flux f(u) is unknown.

Identification problem: Assume that we know the solution at time t = T, u(x, T) for a given initial datum $u^0 \in L^2(\mathbb{R})$. Can we determine f?

1 Motivation: a problem in chromatography

"Chromatography is the collective term for a set of laboratory techniques for the separation of mixtures. It involves passing a mixture dissolved in a "mobile phase" through a stationary phase, which separates the analyte to be measured from other molecules in the mixture and allows it to be isolated."

Typical chromatogram: conductivity of the liquid at the bottom

Mathematical modelling (James and Postel, 09)

We consider a mixture of p components and denote by $c^1, c^2 \in \mathbb{R}^p$ the concentrations in phases 1 and 2 of the p chemical components.

Assume that equilibrium is modelled by the **isotherm**

$$\mathbf{h}:\mathbb{R}^p \to \mathbb{R}^p$$

such that $\mathbf{c^2} = \mathbf{h}(\mathbf{c^1})$

If we assume constant temperature (no energy equation) and constant velocity (no momentoum equation) the only equation is the mass conserving one.

Phase 1 moves downward with constant velocity u.

Phase 2 has velocity v = 0.

 $\partial_t(\mathbf{c^1} + \mathbf{c^2}) + \partial_{\mathbf{x}}(\mathbf{uc^1}) = \mathbf{0}.$

If we use the isotherm and write $\mathbf{c} = \mathbf{c}^1$ then

$$\begin{cases} \partial_x \mathbf{c} + \partial_t \mathbf{F}(\mathbf{c}) = 0, & t \in (0, T), \quad x \in [0, L], \\ \mathbf{c}(0, t) = \mathbf{c}_{injected}(t), & t \in (0, T), \\ \mathbf{c}(x, 0) = 0. \end{cases}$$

where

$$\mathbf{F}(\mathbf{c}) = \frac{1}{u} \left(\mathbf{c} + \frac{1 - \varepsilon}{\varepsilon} \mathbf{h}(\mathbf{c}) \right)$$

 $\varepsilon = \text{void fraction of the column}$

If we change x by t a classical conservation law is obtianed.

Main problem: Find the isotherm h. This can be obtained as a solution of an optimal control problem. Consider the cost functional

$$J(h) = \frac{1}{2} \int_0^T \sum_{i=1}^p \left| c_i(L,T) - c_i^{obs}(t) \right|^2 dt$$

Usually h is obtained from a parametric model. A classical example of isotherm is the Langmuir isotherm which is determined by p + 1 parameters

$$h(\mathbf{c}) = N^* \frac{K_i c_i}{1 + \sum_{i=1}^p K_i c_i},$$

with $c = (c_1, ..., c_p)$.

Statement

We consider the 1-d scalar conservation law:

$$\partial_t u + \partial_x (f(u)) = 0, \quad \text{in } \mathbb{R} \times (0, T), u(x, 0) = u^0(x), \quad x \in \mathbb{R}$$
(2)

Given an initial datum $u^0 \in L^2(\mathbb{R})$ and target $u^d \in L^2(\mathbb{R})$ we consider the cost functional $J: \mathcal{U}_{ad} \to \mathbb{R}$, defined by

$$J(f) = \int_{\mathbb{R}} |u(x,T) - u^d(x)|^2 \, dx,$$
(3)

where u(x, t) is the unique entropy solution.

We consider the inverse problem: Find $f^{\min} \in \mathcal{U}_{ad}$ such that

$$J(f^{\min}) = \min_{f \in \mathcal{U}_{ad}} J(f).$$
(4)

(James and Sepúlveda, 1999)

Figure 1: Characteristics lines for the scalar conservation law.

Characteristic lines

$$\frac{dx}{dt} = f'(u^0(x)).$$

Main questions

- 1. Existence of minimizers. We include conditions on the admissible set to guarantee:
 - Continuity in some topology (Lucier, 1986)

 $\|u_f(\cdot,t) - u_g(\cdot,t)\|_{L^1(\mathbb{R})} \le t \|f - g\|_{Lip} \|u^0\|_{BV}.$

• Compactness of minimizing sequences. We can consider

$$\mathcal{U}_{ad} = W^{2,\infty}.$$

2. Uniqueness. A unique minimizer does not exists in general for such problems. Moreover we can have many local minima.

3. Numerical approximation.

- (a) Introduce a suitable discretization for the functional J, J_{Δ} , the equations, etc.
- (b) Solve the discrete optimization problem: Find f_{Δ}^{\min} s.t.

$$J_{\Delta}(f_{\Delta}^{\min}) = \min_{f_{\Delta} \in \mathcal{U}_{\Delta}} J_{\Delta}(f_{\Delta}),$$

4. Convergence of discrete minimizers when $\Delta \rightarrow 0$ (conservative monotone schemes).

The discrete problem

Assume that we discretize the conservation law using one of the convergent conservative numerical scheme (Lax-Friedrichs, Godunov, etc.) and we take

$$J_{\Delta}(f_{\Delta}) = \frac{\Delta x}{2} \sum_{j=-\infty}^{\infty} (u_j^{N+1} - u_j^d)^2,$$
(5)

where $u_{\Delta x}^0 = \{u_j^0\}$ and $u_{\Delta}^d = \{u_j^d\}$ are numerical approximations of $u^0(x)$ and $u^d(x)$ at the nodes x_j , respectively. For example, we can take

$$u_j^0 = \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} u_0(x) dx,$$

where $x_{j\pm 1/2} = x_j \pm \Delta x$.

Let us introduce an approximation of the space \mathcal{U}_{ad} , $\mathcal{U}_{ad}^{\Delta}$, as the linear space generated by a set of base functions

$$\mathcal{U}_{ad}^{\Delta} = < f^1, f^2, ..., f^K > .$$

Problem: Find f_{Δ}^{\min} such tha

$$J_{\Delta}(f_{\Delta}^{\min}) = \min_{f_{\Delta} \in \mathcal{U}_{ad}^{\Delta}} J_{\Delta}(f_{\Delta}).$$
(6)

Methods to obtain descent directions

- The discrete approach. We compute the gradient of the discrete system. Discontinuities are ignored.
- The continuous approach. We discretize the gradient of the continuous functional. Discontinuities must be taken into account.

The continuous approach for smooth solutions

Let δJ be the Gateaux derivative of J at f in the direction δf . We have

$$\delta J = \int_{\mathbb{R}} (u(x,T) - u^d(x)) \delta u(x,T) \, dx,$$

where δu solves the linearized system,

$$\partial_t \delta u + \partial_x \left(f'(u) \delta u \right) = -\partial_x \left(\delta f(u) \right),$$

$$\delta u(x, 0) = 0.$$

A characteristic change of variables allows us to write

$$\delta u(x,t) = -t\partial_x(\delta f(u(x,t))).$$

Then, δJ can be written as,

$$\delta J = -T \int_{\mathbb{R}} \partial_y (\delta f(u(y,T))) (u(y,T) - u^d(y)) \, dy.$$

If we assume that

$$f(s) = \sum_{k=1}^{K} \alpha_k f_k(s)$$

Then

$$\delta J = -\sum_{k=1}^{K} \delta \alpha_k T \int_{\mathbb{R}} \partial_x (\delta f_k(u(x,T))) (u(x,T) - u^d(x)) dx$$

and an obvious descent direction is given by

$$\delta \alpha_k = T \int_{\mathbb{R}} \partial_x (\delta f_k(u(x,t))) (u(x,T) - u^d(x) \, dx.$$

The continuous approach in presence of a single shock

Assume that u(x, t) is a weak entropy solution of the conservation law with a discontinuity along a regular curve $\Sigma = \{(t, \varphi(t)), t \in [0, T]\}$. It satisfies the Rankine-Hugoniot condition on Σ

$$\varphi'(t)[u]_{\varphi(t)} = [f(u)]_{\varphi(t)}.$$
(7)

Figure 2: Subdomains Q^- and Q^+ .

Then the pair (u, φ) satisfies the system

$$\begin{aligned}
\partial_{t}u + \partial_{x}(f(u)) &= 0, & \text{in } Q^{-} \cup Q^{+}, \\
\varphi'(t)[u]_{\varphi(t)} &= [f(u)]_{\varphi(t)}, & t \in (0,T), \\
\varphi(0) &= \varphi^{0}, & \\
u(x,0) &= u^{0}(x), & \text{in } \{x < \varphi^{0}\} \cup \{x > \varphi^{0}\}.
\end{aligned}$$
(8)

We call generalized tangent vector at u to the pair $(\delta u, \delta \varphi)$ which describes an infinitesimal perturbation of the function u, i.e.

$$u^{\varepsilon} = u + \varepsilon \delta u - [u]_{\varphi} \chi_{[\varphi, \varphi + \delta \varphi]}$$

The generalized tangent vector $(\delta u, \delta \varphi)$ satisfies the following linearized system:

$$\begin{cases}
\partial_t \delta u + \partial_x (f'(u) \delta u) = -\partial_x (\delta f(u)), & \text{in } Q^- \cup Q^+, \\
\delta \varphi'(t) [u]_{\varphi(t)} + \delta \varphi(t) \left(\varphi'(t) [u_x]_{\varphi(t)} - [f'(u) u_x]_{\varphi(t)} - [\delta f(u)]_{\varphi(t)} \right) \\
+ \varphi'(t) [\delta u]_{\varphi(t)} - [u \delta u]_{\varphi(t)} = 0, & \text{in } (0, T), \\
\delta u(x, 0) = 0, & \text{in } \{x < \varphi^0\} \cup \{x > \varphi^0\}, \\
\delta \varphi(0) = 0,
\end{cases}$$
(9)

This linearization has been obtained by different authors in similar problems: Bressan and Marson (95), Ulbrich (03), Bardos and Pironneau (03), Godlewski and Raviart (99), etc.

A heuristic derivation of the linearized Rankine Hugoniot condition

 $\varphi'(t)[u]_{\varphi(t)} = [f(u)]_{\varphi(t)}$

is obtained by considering it as a inner Dirichlet boundary condition for which the classical shape derivative applies.

This also applies for systems and higher dimensions. However a rigorous proof is much more difficult. It requires to prove that the solution u^{ε} with flux $f + \epsilon \delta f$ can be represented with the generalized tangent vector $(\delta u, \delta \varphi)$ at any time $t \in (0, T)$. The linearized system is well-defined

Figure 3: Characteristic lines entering on a shock

Variation of the functional *J*:

$$J(f) = \frac{1}{2} \int_{\mathbb{R}} |u(x,T) - u^d|^2 dx$$

$$\delta J = \int_{\{x < \varphi(T)\} \cup \{x > \varphi(T)\}} (u(x,T) - u^d(x)) \delta u(x,T) - \left[\frac{(u(x,T) - u^d(x))^2}{2}\right]_{\varphi(T)} \delta \varphi(T).$$

Lemma The Gateaux derivative of J can be written as

$$\delta J = -T \int_{\{x < \varphi(T)\} \cup \{x > \varphi(T)\}} \partial_x (\delta f(u))(x,T) (u(x,T) - u^d(x)) dx$$

$$-T\eta \frac{[\delta f(u(x,T))]_{\varphi(t)}}{[u(x,T)]_{\varphi(t)}},$$

where

$$\eta = \begin{cases} \frac{1}{2} \left[(u(\cdot, T) - u^d(\varphi(T)^+))^2 \right]_{\varphi(T)}, & \text{if } \delta\varphi(T) > 0, \\ \frac{1}{2} \left[(u(\cdot, T) - u^d(\varphi(T)^-))^2 \right]_{\varphi(T)}, & \text{if } \delta\varphi(T) < 0, \end{cases}$$
(10)

The alternating descent method (C. Castro F. Palacios and E. Zuazua, 07)

Let

$$x^{-} = \varphi(T) - u^{-}(\varphi(T))T, \qquad x^{+} = \varphi(T) - u^{+}(\varphi(T))T,$$

and consider the following subsets,

$$\hat{Q}^- = \{(x,t) \in \mathbb{R} \times (0,T) \text{ such that } x < \varphi(T) - u^-(\varphi(T))t\},\$$

$$\hat{Q}^+ = \{(x,t) \in \mathbb{R} \times (0,T) \text{ such that } x > \varphi(T) - u^+(\varphi(T))t\}.$$

Figure 4: Subdomains \hat{Q}^- and \hat{Q}^+

Theorem 1 Assume that we restrict the variations δf to those that satisfy,

$$[\delta f(u(x,T))]_{\varphi(T)} = \delta f(u(\varphi(T)^+,T)) - \delta f(u(\varphi(T)^-,T)) = 0.$$
(11)

Then, the solution $(\delta u, \delta \varphi)$ of the linearized system satisfies $\delta \varphi(T) = 0$ and the generalized Gateaux derivative of J in the direction $(\delta u^0, \delta \varphi^0)$ can be written as

$$\delta J = -T \int_{\{x < \varphi(T)\} \cup \{x > \varphi(T)\}} \partial_x (\delta f(u))(x, T)(u(x, T) - u^d(x)) \, dx. \tag{12}$$

Moreover, if we choose δf such that

$$[\delta f(u(x,T))]_{\varphi(T)} = \delta f(u(\varphi(T)^+,T)) - \delta f(u(\varphi(T)^-,T)) \neq 0,$$
(13)

then $\delta \varphi(T) \neq 0$ and this produce a change in the shock position.

We are assuming that the fluxes f are taken in the finite dimensional space. We decompose the finite dimensional space of variations of f

$$T_{\alpha} = T_{\alpha}^1 \oplus T_{\alpha}^2,$$

where T^1_{α} is the subspace of elements $(\alpha_1, ..., \alpha_M) \in \mathbb{R}^M$ for which

$$\sum_{m=1}^{M} \alpha_m [\delta f_m(u(\cdot, T))]_{\varphi(T)} = 0,$$

and we consider alternatively descent directions in T_1^{α} and T_2^{α} .

Numerical experiments

Experiment 1. We first consider a piecewise constant initial datum u^0 and target profile u^d given by

$$u^{0,min} = \begin{cases} 1 \text{ if } x < -1/2, \\ 0 \text{ if } x \ge 0. \end{cases}$$
(14)

$$u^{d} = \begin{cases} 1 \text{ if } x < 0, \\ 0 \text{ if } x \ge 0, \end{cases}$$
(15)

and the time T = 1.

The nonlinearity is assumed to be a linear combination of the Legendre polinomials in $\left[0,1\right]$

$$\begin{split} P_1(u) &= 1, \\ P_2(u) &= \sqrt{12}(u - 1/2), \\ P_3(u) &= \sqrt{80}(3/2u^2 - 3/2u + 1/4), \\ P_4(u) &= \sqrt{448}(5/2u^3 - 15/4u^2 + 3/2u - 1/8), \\ P_5(u) &= \sqrt{2304}(35/8u^4 - 35/4u^3 + 45/8u^2 - 5/4u + 1/16), \\ P_6(u) &= \sqrt{11264}(63/8u^5 - 315/16u^4 + 35/2u^3 - 105/16u^2 + 15/16u - 1/32). \end{split}$$

If no restriction is included on the size of the nonlinearities then, different solutions are obtained for different courant numbers

Thus, we effectively minimize the functional

$$J(u) = \int_{\mathbb{R}} |u(x,T) - u^d(x)|^2 \, dx + \frac{1}{10} \int_0^1 |f'(s)|^2 ds.$$

Figure 5: Experiment 1. f'(s) obtained after 30 iterations of the gradient method, for the unpenalized functional (5), with the Lax-Friedrichs scheme and for different values of the Courant number $\Delta x/\Delta t = 1/2, 1/4, 1/8$. The algorithm is initialized with f = 0.

$\Delta x = 1/20, f_{ini} = 0$	α_1	$lpha_2$	$lpha_3$	$lpha_4$	$lpha_5$	$lpha_6$	$\ f(0) - f(1) \ $
Lax-Friedrichs	-0.9082	0.2149	0.2014	-0.1127	0.0675	-0.0268	0.9082
Roe	-0.9354	0.1347	0.1797	-0.1048	0.0176	0.0059	0.9354
Continuous	-0.9240	0.1575	0.2299	-0.2108	0.0226	-0.0139	0.9240
Alternating	-0.9832	0.3000	0.0054	-0.0046	-0.0029	0.0078	0.9832
· · · · ·							
$\Delta x = 1/40, f_{ini} = 0$	α_1	$lpha_2$	α_3	$lpha_4$	$lpha_5$	α_6	$f(0) - f(1) \mid$
$\Delta x = 1/40, f_{ini} = 0$ Lax-Friedrichs	α_1 -0.9176	$\begin{array}{c} \alpha_2 \\ \hline 0.0681 \end{array}$	$\begin{array}{ c c }\hline \alpha_3\\\hline 0.1997 \end{array}$	$\begin{array}{ c c c }\hline \alpha_4 \\ \hline -0.1167 \end{array}$	$\frac{\alpha_5}{0.0656}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	f(0) - f(1) 0.9176
$\Delta x = 1/40, f_{ini} = 0$ Lax-Friedrichs Roe	$ \begin{array}{ c c c } \alpha_1 \\ \hline -0.9176 \\ -0.9648 \\ \end{array} $	$lpha_2$ 0.0681 0.0171	$\begin{array}{c c} \alpha_3 \\ \hline 0.1997 \\ 0.0797 \end{array}$	$ \begin{array}{r} \alpha_4 \\ -0.1167 \\ -0.1415 \\ \end{array} $	$\begin{array}{ c c c } & \alpha_5 \\ \hline 0.0656 \\ 0.0183 \end{array}$	$\begin{array}{ c c c } \alpha_6 \\ \hline 0.0237 \\ 0.0480 \\ \hline \end{array}$	$ \begin{array}{c c} f(0) - f(1) \\ \hline 0.9176 \\ 0.9354 \end{array} $
$\Delta x = 1/40, f_{ini} = 0$ Lax-Friedrichs Roe Continuous	$\begin{array}{ c c c } & \alpha_1 \\ & -0.9176 \\ & -0.9648 \\ & -0.9465 \end{array}$	$\begin{array}{c} \alpha_2 \\ 0.0681 \\ 0.0171 \\ 0.0234 \end{array}$	$\begin{array}{ c c c } \alpha_3 \\ \hline 0.1997 \\ 0.0797 \\ 0.1304 \end{array}$	$\begin{array}{r} \alpha_4 \\ \hline -0.1167 \\ -0.1415 \\ -0.2533 \end{array}$	$\begin{array}{ c c c } & \alpha_5 \\ \hline 0.0656 \\ 0.0183 \\ -0.0136 \end{array}$	$\begin{array}{ c c c } \alpha_6 \\ \hline 0.0237 \\ 0.0480 \\ 0.1058 \end{array}$	$\begin{array}{c c} f(0) - f(1) \\ \hline 0.9176 \\ 0.9354 \\ 0.9465 \end{array}$
$\Delta x = 1/40, f_{ini} = 0$ Lax-Friedrichs Roe Continuous Alternating	$\begin{array}{ c c c } & \alpha_1 \\ & -0.9176 \\ & -0.9648 \\ & -0.9465 \\ & -0.9865 \end{array}$	$\begin{array}{c} \alpha_2 \\ 0.0681 \\ 0.0171 \\ 0.0234 \\ 0.1227 \end{array}$	$\begin{array}{c c} \alpha_3 \\ \hline 0.1997 \\ 0.0797 \\ 0.1304 \\ 0.0831 \end{array}$	$\begin{array}{r} \alpha_4 \\ \hline -0.1167 \\ -0.1415 \\ -0.2533 \\ -0.1129 \end{array}$	$\begin{array}{c c} \alpha_5 \\ \hline 0.0656 \\ 0.0183 \\ -0.0136 \\ -0.0407 \end{array}$	$\begin{array}{c c} \alpha_6 \\ \hline 0.0237 \\ 0.0480 \\ 0.1058 \\ 0.0404 \end{array}$	$\begin{array}{c c} f(0) - f(1) \\ \hline 0.9176 \\ 0.9354 \\ 0.9465 \\ 0.9865 \end{array}$

$\Delta x = 1/20, f_{ini} = u^2/2$	$ \alpha_1$	α_2	$lpha_3$	$lpha_4$	$lpha_5$	$lpha_6$	f(0) - f(0) = f(0)
Lax-Friedrichs	-0.9136	0.2220	0.1907	-0.1070	0.0666	-0.0320	0.9136
Roe	-0.9536	0.1403	0.1201	-0.0611	0.0241	-0.0318	0.9536
Continuous	-0.9125	0.1879	0.3727	-0.1332	-0.0488	-0.1111	0.9125
Alternating	-0.9782	0.3017	0.0404	-0.0288	0.0169	-0.0267	0.9782

Table 1: Experiment 1. Values for the parameters found after 12 iterations of the descent algorithm with the different methods. The last column contains the value f(0) - f(1), which must be 1 for the minimizers of the continuous functional without penalization. We assume that the Courant number is $\Delta t / \Delta x = 0.5$ and the algorithm is initialized with the indicated $f = f_{ini}$.

Figure 6: Experiment 1. Log of the functional versus the number of iterations for the different methods. $\Delta t/\Delta x = 1/20$ (upper left) and 1/40 (upper right) with initialization f = 0. The lower figure correspond to the initialization $f(u) = u^2/2$ and $\Delta x = 1/20$.

 u^d and u(x,T) at initialization

parameters	α_1	$lpha_2$	$lpha_3$	$lpha_4$	$lpha_5$	$lpha_6$
Lax-Friedrichs	0.4601	0.5786	0.0016	-0.0954	-0.0034	-0.0383
Roe	-0.5497	1.4065	-0.0901	0.1191	-0.0165	0.0446
Continuous	-0.5326	1.0487	-0.0246	0.0244	-0.0020	0.0030
Alternating	0.4902	0.1256	0.0276	-0.0804	0.0037	-0.0110

Table 2: Experiment 3. Optimal values for the parameters with the different methods

Figure 7: Experiment 2. Log of the functional versus the number of iterations for the different methods.

Figure 8: Experiment 2. Target and solution at time T = 1 with the optimal f found with the Lax-Friedrichs (upper left), Roe (upper right), continuous (lower left) and Alternating (lower right) methods.