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Statement

Le us consider the 1-d scalar conservation law:

{ Ou + 0z (f(u)) = inR x (0,T), 0
u(z,0) = u’(z), $€R

where the nonlinear flux f(u) is unknown.

Identification problem: Assume that we know the solution at time ¢ = T, u(z,T') for a
given initial datum u° € L?(R). Can we determine f?




1 Motivation: a problem in chromatography

”Chromatography is the collective term for a set of laboratory techniques for the separation
of mixtures. It involves passing a mixture dissolved in a "mobile phase” through a stationary
phase, which separates the analyte to be measured from other molecules in the mixture and
allows it to be isolated.”
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Typical chromatogram: conductivity of the liquid at the bottom

Mathematical modelling (James and Postel, 09)

We consider a mixture of p components and denote by ¢!, c? € RP the concentrations in
phases 1 and 2 of the p chemical components.
Assume that equilibrium is modelled by the isotherm

h:RP - RP

such that ¢ = h(c!)



If we assume constant temperature (no energy equation) and constant velocity (no momen-
toum equation) the only equation is the mass conserving one.

Phase 1 moves downward with constant velocity w.

Phase 2 has velocity v = 0.

Or(ct + c?) + Ox(uct) = 0.

If we use the isotherm and write ¢ = ¢! then

O,c+ 0 F(c)=0, te(0,T), ze€l0,L]
C<Oat) - Cinjected(t), IS (O,T),
c(xz,0) = 0.

where

e = void fraction of the column
If we change x by t a classical conservation law is obtianed.

Main problem: Find the isotherm h. This can be obtained as a solution of an optimal
control problem. Consider the cost functional

J(h) = %/O Z‘ci(L,T)—cbe(t)‘th



Usually A is obtained from a parametric model. A classical example of isotherm is the
Langmuir isotherm which is determined by p + 1 parameters

. Kic;
1 + Zle Kici ’

h(c) =N

with ¢ = (c1, ..., ¢p).



Statement

We consider the 1-d scalar conservation law:

{ Oru+ 05(f(u)) =0, inRx(0,T), (2)
u(z,0) =u’(z), zeR

Given an initial datum v° € L?(R) and target u® € L?(R) we consider the cost functional
J : U,q — R, defined by

J(f) = / ju(z, T) — ud(z)? d, 3)

where u(x, t) is the unique entropy solution.
We consider the inverse problem: Find f™" € U, 4 such that

J(f™") = min J(f). 4)

feuad

(James and Sepulveda, 1999)
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Figure 1: Characteristics lines for the scalar conservation law.

Characteristic lines




Main questions

1. Existence of minimizers. We include conditions on the admissible set to guarantee:

e Continuity in some topology (Lucier, 1986)
g () = ug( ) oy < tIf = gllninlle®| By
e Compactness of minimizing sequences. We can consider

Z/{ad = WQ’OO.

2. Uniqueness. A unique minimizer does not exists in general for such problems. More-
over we can have many local minima.



3. Numerical approximation.

(a) Introduce a suitable discretization for the functional .J, Ja, the equations, etc.

(b) Solve the discrete optimization problem: Find f{" s.t.

Ja(fA )ZfiﬂelgllA Ja(fa),

4. Convergence of discrete minimizers when A — 0 (conservative monotone schemes ).




The discrete problem

Assume that we discretize the conservation law using one of the convergent conservative
numerical scheme (Lax-Friedrichs, Godunov, etc.) and we take

A oo
Ia(fa) =5 > @ —uf)?, (5)

j=—o0

where u}, = {u9} and u§ = {u$} are numerical approximations of u°(x) and u®(x) at the

nodes z ;, respectively. For example, we can take

0 1 /*’Ej+1/2 (2)d
U; = —— ug()dx,
T Ax ),

j—1/2

where x;41/0 = x; & Ax.
Let us introduce an approximation of the space U, q, U aA , as the linear space generated by
a set of base functions

A 1 £2 K
uad:<f7f7°“7f > .

Problem: Find fX" such tha

JA(fRMY = min Ja(fa). (6)

faceus,




Methods to obtain descent directions

e The discrete approach. We compute the gradient of the discrete system. Discontinuities
are ignored.

e The continuous approach. We discretize the gradient of the continuous functional. Dis-
continuities must be taken into account.




The continuous approach for smooth solutions

Let 0.J be the Gateaux derivative of J at f in the direction ¢ f. We have
57 = / (u(z, T) — u(2))du(z, T) da,
R
where du solves the linearized system,

{ Opou + 9, (f'(u)du) = —0,(0f (u)),
du(x,0) = 0.

A characteristic change of variables allows us to write

du(x,t) = —t0(0 f(u(x,))).

Then, 0.J can be written as,

5J = T / 0,(57 (u(y, T))) (uly, T) — u(y)) dy.



If we assume that
f(s) = éakfk(S)
Then _
5T = — kf:l Son,T /R 0, (3 fr(u(z, T))) (u(z,T) — u'(x)) dz

and an obvious descent direction is given by

dag, = T/R@x(éfk(u(a:,t))) (w(z, T) — u(z) du.




The continuous approach in presence of a single shock

Assume that u(z, t) is a weak entropy solution of the conservation law with a discontinuity
along a regular curve ¥ = {(t, p(t)),t € [0,T]}. It satisfies the Rankine-Hugoniot condition
on X

Spl(t)[u]go(t) — [f(u)]go(t) . (7)

(] |

Figure 2: Subdomains Q~ and Q™.




Then the pair (u, ) satisfies the system

( atu+ax(f(u)) =0, an uQT,
) o' (O)|u]pr) = [f(u>]cp<t) ; €(0,7), (8)
p(0) = ¢,
| u(z,0) = u(z), in {z < "} U {z > '}

o

8
¢ ¢ o

We call generalized tangent vector at u to the pair (du, dp) which describes an infinitesimal
perturbation of the function w, i.e.

u® = u+edu — [u]sox[so,soJr(Sso]



The generalized tangent vector (Ju, ) satisfies the following linearized system:

( 00u + 0, (f (u)du) = -0, (6f(u)), InQ- UQT,
0 () [u) oy + 00(t) (' (8) [ua) ey — [f (W ta]pm — [0F(wW)]uw)

{ +¢’(t)[5u]¢(t) — [uéu]w(t) = O, n (O, T), (9)
du(xz,0) =0, in{zx < '} U{z > @'},
| dp(0) =0,

This linearization has been obtained by different authors in similar problems: Bressan and
Marson (95), Ulbrich (03), Bardos and Pironneau (03), Godlewski and Raviart (99), etc.




A heuristic derivation of the linearized Rankine Hugoniot condition
o' (O)[ulpy = [f(W)] 1)

1s obtained by considering it as a inner Dirichlet boundary condition for which the classical
shape derivative applies.

e o (T)

(an] |

This also applies for systems and higher dimensions. However a rigorous proof is much
more difficult. It requires to prove that the solution u® with flux f 4 edf can be represented
with the generalized tangent vector (du, d¢) at any time t € (0, 7).




The linearized system is well-defined

Figure 3: Characteristic lines entering on a shock




Variation of the functional J:

J(f) = %/R\u(a:,T) —udx

(u(z, T) — u(x))?

5 d0p(T).
@(T)

0J = / (u(z, T) — u®(x))du(x, T)— [
{z<o(T)}u{z>e(T)}

Lemma The Gateaux derivative of J can be written as

60 = 0x(0f(u)(x,T) (u(x,T) — ul(x)) dx

—T/
{x<p(T) yU{x>p(T)}
[6f (u(z,T))] e
[u(@, T)]pw)y

where

s WD) = (e (T))?] gy i 50(T) >0, (10)
n= (-, T) — ud(o(T)7))?] if 6¢(T) < 0,




The alternating descent method (C. Castro F. Palacios and E. Zuazua, 07)

Let
= =o(T) —u" (p(T)NT,  x" =¢(T) —u" (p(T)T,

and consider the following subsets ,

O~ = {(x,t) € R x (0,T) such that = < o(T) — u~ (o(T))t},

A

Q" = {(x,t) € R x (0,T) such that x > o(T) — u™ (o(T))t}.

t=

Figure 4: Subdomains Q_ and Q+



Theorem 1 Assume that we restrict the variations ¢ f to those that satisfy,

[0.f (u(z, T))]per) = 6f (u((T) ", T)) = o f (w(e(T) ™, T)) = 0. (11)

Then, the solution (du, dp) of the linearized system satisfies 6@ (') = 0 and the generalized
Gateaux derivative of J in the direction (du®, @) can be written as

5T = —T / (3£ (w) (z, T) (u(x, T) — ul(x)) dv.  (12)
{z<e(T)}U{z>e(T)}

Moreover, if we choose ¢ f such that

[6.f (w(@, T)p(ry = 0f (u(e(T) ", T)) = of (u(e(T) ™, T)) # O, (13)

then 6 ('T") # 0 and this produce a change in the shock position.

We are assuming that the fluxes f are taken in the finite dimensional space. We decompose
the finite dimensional space of variations of f

T,=T®T?
where T is the subspace of elements (a1, ..., apr) € RM for which

M
Z O‘m[éfm(u('aT))]so(T) =0,

and we consider alternatively descent directions in 77" and 75*.




Numerical experiments

Experiment 1. We first consider a piecewise constant initial datum u° and target profile

u? given by

and the time 1" = 1.

’U,O’min _ lifz < —1/2,
Oifx > 0.

d lifz <O,
u® = :
Oifz > 0,

AN

u u? and u(zx, T) at initialization

(14)

(15)




The nonlinearity is assumed to be a linear combination of the Legendre polinomials in
[0,1]

P1 (’U,) = 1,

Py(u) = v12(u — 1/2),

Ps(u) = v/80(3/2u? — 3/2u + 1/4),

Py(u) = V448(5/2u — 15/4u? + 3/2u — 1/8),

Ps(u) = v/2304(35/8u* — 35/4u3 + 45/8u® — 5/4u + 1/16),

Ps(u) = v/11264(63/8u® — 315/16u* + 35/2u® — 105/16u? + 15/16u — 1/32).

If no restriction 1s included on the size of the nonlinearities then, different solutions are
obtained for different courant numbers
Thus, we effectively minimize the functional

u(, T) = u(2) de + — [ |f'(s)Pds.
0=, of
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Figure 5: Experiment 1. f’(s) obtained after 30 iterations of the gradient method, for the
unpenalized functional (5)), with the Lax-Friedrichs scheme and for different values of the
Courant number Az /At = 1/2,1/4,1/8. The algorithm is initialized with f = 0.



Az = 1/20, fin; = 0 aq Qo a3 oy as g f(0) — f(1)
Lax-Friedrichs —0.9082 | 0.2149 | 0.2014 | —0.1127 | 0.0675 | —0.0268 0.9082
Roe —0.9354 | 0.1347 | 0.1797 | —0.1048 | 0.0176 0.0059 0.9354
Continuous —0.9240 | 0.1575 | 0.2299 | —0.2108 | 0.0226 | —0.0139 0.9240
Alternating —0.9832 | 0.3000 | 0.0054 | —0.0046 | —0.0029 | 0.0078 0.9832
Ax =1/40, fin; =0 a1 0%) (0% Oy (0759 (877 f(O) - f(].)
Lax-Friedrichs —0.9176 | 0.0681 | 0.1997 | —0.1167 | 0.0656 | 0.0237 0.9176
Roe —0.9648 | 0.0171 | 0.0797 | —0.1415 | 0.0183 | 0.0480 0.9354
Continuous —0.9465 | 0.0234 | 0.1304 | —0.2533 | —0.0136 | 0.1058 0.9465
Alternating —0.9865 | 0.1227 | 0.0831 | —0.1129 | —0.0407 | 0.0404 0.9865
Az = 1/20, fin; = u2/2 aq Qo Qs Qy as g f(0) — f(
Lax-Friedrichs —0.9136 | 0.2220 | 0.1907 | —0.1070 | 0.0666 | —0.0320 0.9136
Roe —0.9536 | 0.1403 | 0.1201 | —0.0611 | 0.0241 | —0.0318 0.9536
Continuous —0.9125 | 0.1879 | 0.3727 | —0.1332 | —0.0488 | —0.1111 0.9125
Alternating —0.9782 | 0.3017 | 0.0404 | —0.0288 | 0.0169 | —0.0267 0.9782
Table 1: Experiment 1. Values for the parameters found after 12 iterations of the descent

algorithm with the different methods. The last column contains the value f(0) — f(1), which
must be 1 for the minimizers of the continuous functional without penalization. We assume
that the Courant number is At/Ax = 0.5 and the algorithm is initialized with the indicated

f — fznz
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Figure 6: Experiment 1. Log of the functional versus the number of iterations for the different
methods. At/Ax = 1/20 (upper left) and 1/40 (upper right) with initialization f = 0. The
lower figure correspond to the initialization f(u) = u?/2 and Az = 1/20.



u u? and u(z,T) at initialization

parameters o%1 2 a3 oy a5 6
Lax-Friedrichs 0.4601 | 0.5786 | 0.0016 | —0.0954 | —0.0034 | —0.0383
Roe —0.5497 | 1.4065 | —0.0901 | 0.1191 | —0.0165 | 0.0446
Continuous —0.5326 | 1.0487 | —0.0246 | 0.0244 | —0.0020 | 0.0030
Alternating 0.4902 | 0.1256 | 0.0276 | —0.0804 | 0.0037 | —0.0110

Table 2: Experiment 3. Optimal values for the parameters with the different methods
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Figure 7: Experiment 2. Log of the functional versus the number of iterations for the different
methods.
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Figure 8: Experiment 2. Target and solution at time 7" = 1 with the optimal f found with the
Lax-Friedrichs (upper left), Roe (upper right), continuous (lower left) and Alternating (lower
right) methods.
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