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Statement
Le us consider the 1-d scalar conservation law:{

∂tu+ ∂x(f(u)) = 0, in R× (0, T ),
u(x, 0) = u0(x), x ∈ R (1)

where the nonlinear flux f(u) is unknown.

Identification problem: Assume that we know the solution at time t = T , u(x, T ) for a
given initial datum u0 ∈ L2(R). Can we determine f?



1 Motivation: a problem in chromatography

”Chromatography is the collective term for a set of laboratory techniques for the separation
of mixtures. It involves passing a mixture dissolved in a ”mobile phase” through a stationary
phase, which separates the analyte to be measured from other molecules in the mixture and
allows it to be isolated.”



Typical chromatogram: conductivity of the liquid at the bottom

Mathematical modelling (James and Postel, 09)

We consider a mixture of p components and denote by c1, c2 ∈ Rp the concentrations in
phases 1 and 2 of the p chemical components.

Assume that equilibrium is modelled by the isotherm

h : Rp → Rp

such that c2 = h(c1)



If we assume constant temperature (no energy equation) and constant velocity (no momen-
toum equation) the only equation is the mass conserving one.

Phase 1 moves downward with constant velocity u.
Phase 2 has velocity v = 0.

∂t(c1 + c2) + ∂x(uc1) = 0.

If we use the isotherm and write c = c1 then ∂xc + ∂tF(c) = 0, t ∈ (0, T ), x ∈ [0, L],
c(0, t) = cinjected(t), t ∈ (0, T ),
c(x, 0) = 0.

where

F(c) =
1
u

(
c +

1− ε
ε

h(c)
)

ε = void fraction of the column
If we change x by t a classical conservation law is obtianed.

Main problem: Find the isotherm h. This can be obtained as a solution of an optimal
control problem. Consider the cost functional

J(h) =
1
2

∫ T

0

p∑
i=1

∣∣ci(L, T )− cobsi (t)
∣∣2 dt



Usually h is obtained from a parametric model. A classical example of isotherm is the
Langmuir isotherm which is determined by p+ 1 parameters

h(c) = N∗
Kici

1 +
∑p
i=1Kici

,

with c = (c1, ..., cp).



Statement
We consider the 1-d scalar conservation law:{

∂tu+ ∂x(f(u)) = 0, in R× (0, T ),
u(x, 0) = u0(x), x ∈ R (2)

Given an initial datum u0 ∈ L2(R) and target ud ∈ L2(R) we consider the cost functional
J : Uad → R, defined by

J(f) =
∫

R
|u(x, T )− ud(x)|2 dx, (3)

where u(x, t) is the unique entropy solution.
We consider the inverse problem: Find fmin ∈ Uad such that

J(fmin) = min
f∈Uad

J(f). (4)

(James and Sepúlveda, 1999)



Figure 1: Characteristics lines for the scalar conservation law.

Characteristic lines
dx

dt
= f ′(u0(x)).



Main questions
1. Existence of minimizers. We include conditions on the admissible set to guarantee:

• Continuity in some topology (Lucier, 1986)

‖uf (·, t)− ug(·, t)‖L1(R) ≤ t‖f − g‖Lip‖u0‖BV .

• Compactness of minimizing sequences. We can consider

Uad = W 2,∞.

2. Uniqueness. A unique minimizer does not exists in general for such problems. More-
over we can have many local minima.



3. Numerical approximation.

(a) Introduce a suitable discretization for the functional J , J∆, the equations, etc.

(b) Solve the discrete optimization problem: Find fmin
∆ s.t.

J∆(fmin
∆ ) = min

f∆∈U∆
J∆(f∆),

4. Convergence of discrete minimizers when ∆→ 0 (conservative monotone schemes ).



The discrete problem

Assume that we discretize the conservation law using one of the convergent conservative
numerical scheme (Lax-Friedrichs, Godunov, etc.) and we take

J∆(f∆) =
∆x
2

∞∑
j=−∞

(uN+1
j − udj )2, (5)

where u0
∆x = {u0

j} and ud∆ = {udj} are numerical approximations of u0(x) and ud(x) at the
nodes xj , respectively. For example, we can take

u0
j =

1
∆x

∫ xj+1/2

xj−1/2

u0(x)dx,

where xj±1/2 = xj ±∆x.
Let us introduce an approximation of the space Uad, U∆

ad, as the linear space generated by
a set of base functions

U∆
ad =< f1, f2, ..., fK > .

Problem: Find fmin
∆ such tha

J∆(fmin
∆ ) = min

f∆∈U∆
ad

J∆(f∆). (6)



Methods to obtain descent directions

• The discrete approach. We compute the gradient of the discrete system. Discontinuities
are ignored.

• The continuous approach. We discretize the gradient of the continuous functional. Dis-
continuities must be taken into account.



The continuous approach for smooth solutions

Let δJ be the Gateaux derivative of J at f in the direction δf . We have

δJ =
∫

R
(u(x, T )− ud(x))δu(x, T ) dx,

where δu solves the linearized system,{
∂tδu+ ∂x (f ′(u)δu) = −∂x(δf(u)),
δu(x, 0) = 0.

A characteristic change of variables allows us to write

δu(x, t) = −t∂x(δf(u(x, t))).

Then, δJ can be written as,

δJ = −T
∫

R
∂y(δf(u(y, T ))) (u(y, T )− ud(y)) dy.



If we assume that

f(s) =
K∑
k=1

αkfk(s)

Then

δJ = −
K∑
k=1

δαkT

∫
R
∂x(δfk(u(x, T ))) (u(x, T )− ud(x)) dx

and an obvious descent direction is given by

δαk = T

∫
R
∂x(δfk(u(x, t))) (u(x, T )− ud(x) dx.



The continuous approach in presence of a single shock

Assume that u(x, t) is a weak entropy solution of the conservation law with a discontinuity
along a regular curve Σ = {(t, ϕ(t)), t ∈ [0, T ]}. It satisfies the Rankine-Hugoniot condition
on Σ

ϕ′(t)[u]ϕ(t) = [f(u)]ϕ(t) . (7)

Figure 2: Subdomains Q− and Q+.



Then the pair (u, ϕ) satisfies the system
∂tu+ ∂x(f(u)) = 0, in Q− ∪Q+,
ϕ′(t)[u]ϕ(t) = [f(u)]ϕ(t) , t ∈ (0, T ),
ϕ(0) = ϕ0,
u(x, 0) = u0(x), in {x < ϕ0} ∪ {x > ϕ0}.

(8)

We call generalized tangent vector at u to the pair (δu, δϕ) which describes an infinitesimal
perturbation of the function u, i.e.

uε = u+ εδu− [u]ϕχ[ϕ,ϕ+δϕ]



The generalized tangent vector (δu, δϕ) satisfies the following linearized system:
∂tδu+ ∂x(f ′(u)δu) = −∂x(δf(u)), in Q− ∪Q+,
δϕ′(t)[u]ϕ(t) + δϕ(t)

(
ϕ′(t)[ux]ϕ(t) − [f ′(u)ux]ϕ(t) − [δf(u)]ϕ(t)

)
+ϕ′(t)[δu]ϕ(t) − [uδu]ϕ(t) = 0, in (0, T ),

δu(x, 0) = 0, in {x < ϕ0} ∪ {x > ϕ0},
δϕ(0) = 0,

(9)

This linearization has been obtained by different authors in similar problems: Bressan and
Marson (95), Ulbrich (03), Bardos and Pironneau (03), Godlewski and Raviart (99), etc.



A heuristic derivation of the linearized Rankine Hugoniot condition

ϕ′(t)[u]ϕ(t) = [f(u)]ϕ(t)

is obtained by considering it as a inner Dirichlet boundary condition for which the classical
shape derivative applies.

This also applies for systems and higher dimensions. However a rigorous proof is much
more difficult. It requires to prove that the solution uε with flux f + εδf can be represented
with the generalized tangent vector (δu, δϕ) at any time t ∈ (0, T ).



The linearized system is well-defined

Figure 3: Characteristic lines entering on a shock



Variation of the functional J :

J(f) =
1
2

∫
R
|u(x, T )− ud|2dx

δJ =
∫
{x<ϕ(T )}∪{x>ϕ(T )}

(u(x, T )− ud(x))δu(x, T )−
[

(u(x, T )− ud(x))2

2

]
ϕ(T )

δϕ(T ).

Lemma The Gateaux derivative of J can be written as

δJ = −T
∫
{x<ϕ(T )}∪{x>ϕ(T )}

∂x(δf(u))(x, T ) (u(x, T )− ud(x)) dx

−Tη
[δf(u(x, T ))]ϕ(t)

[u(x, T )]ϕ(t)
,

where

η =

{
1
2

[
(u(·, T )− ud(ϕ(T )+))2

]
ϕ(T )

, if δϕ(T ) > 0,
1
2

[
(u(·, T )− ud(ϕ(T )−))2

]
ϕ(T )

, if δϕ(T ) < 0, (10)



The alternating descent method (C. Castro F. Palacios and E. Zuazua, 07)

Let
x− = ϕ(T )− u−(ϕ(T ))T, x+ = ϕ(T )− u+(ϕ(T ))T,

and consider the following subsets ,

Q̂− = {(x, t) ∈ R× (0, T ) such that x < ϕ(T )− u−(ϕ(T ))t},

Q̂+ = {(x, t) ∈ R× (0, T ) such that x > ϕ(T )− u+(ϕ(T ))t}.

Figure 4: Subdomains Q̂− and Q̂+



Theorem 1 Assume that we restrict the variations δf to those that satisfy,

[δf(u(x, T ))]ϕ(T ) = δf(u(ϕ(T )+, T ))− δf(u(ϕ(T )−, T )) = 0. (11)

Then, the solution (δu, δϕ) of the linearized system satisfies δϕ(T ) = 0 and the generalized
Gateaux derivative of J in the direction (δu0, δϕ0) can be written as

δJ = −T
∫
{x<ϕ(T )}∪{x>ϕ(T )}

∂x(δf(u))(x, T )(u(x, T )− ud(x)) dx. (12)

Moreover, if we choose δf such that

[δf(u(x, T ))]ϕ(T ) = δf(u(ϕ(T )+, T ))− δf(u(ϕ(T )−, T )) 6= 0, (13)

then δϕ(T ) 6= 0 and this produce a change in the shock position.

We are assuming that the fluxes f are taken in the finite dimensional space. We decompose
the finite dimensional space of variations of f

Tα = T 1
α ⊕ T 2

α,

where T 1
α is the subspace of elements (α1, ..., αM ) ∈ RM for which

M∑
m=1

αm[δfm(u(·, T ))]ϕ(T ) = 0,

and we consider alternatively descent directions in Tα1 and Tα2 .



Numerical experiments
Experiment 1. We first consider a piecewise constant initial datum u0 and target profile

ud given by

u0,min =
{

1 if x < −1/2,
0 if x ≥ 0. (14)

ud =
{

1 if x < 0,
0 if x ≥ 0, (15)

and the time T = 1.

u0 ud and u(x, T ) at initialization



The nonlinearity is assumed to be a linear combination of the Legendre polinomials in
[0, 1]

P1(u) = 1,
P2(u) =

√
12(u− 1/2),

P3(u) =
√

80(3/2u2 − 3/2u+ 1/4),
P4(u) =

√
448(5/2u3 − 15/4u2 + 3/2u− 1/8),

P5(u) =
√

2304(35/8u4 − 35/4u3 + 45/8u2 − 5/4u+ 1/16),
P6(u) =

√
11264(63/8u5 − 315/16u4 + 35/2u3 − 105/16u2 + 15/16u− 1/32).

If no restriction is included on the size of the nonlinearities then, different solutions are
obtained for different courant numbers

Thus, we effectively minimize the functional

J(u) =
∫

R
|u(x, T )− ud(x)|2 dx+

1
10

∫ 1

0

|f ′(s)|2ds.



Figure 5: Experiment 1. f ′(s) obtained after 30 iterations of the gradient method, for the
unpenalized functional (5), with the Lax-Friedrichs scheme and for different values of the
Courant number ∆x/∆t = 1/2, 1/4, 1/8. The algorithm is initialized with f = 0.



∆x = 1/20, fini = 0 α1 α2 α3 α4 α5 α6 f(0)− f(1)
Lax-Friedrichs −0.9082 0.2149 0.2014 −0.1127 0.0675 −0.0268 0.9082
Roe −0.9354 0.1347 0.1797 −0.1048 0.0176 0.0059 0.9354
Continuous −0.9240 0.1575 0.2299 −0.2108 0.0226 −0.0139 0.9240
Alternating −0.9832 0.3000 0.0054 −0.0046 −0.0029 0.0078 0.9832

∆x = 1/40, fini = 0 α1 α2 α3 α4 α5 α6 f(0)− f(1)
Lax-Friedrichs −0.9176 0.0681 0.1997 −0.1167 0.0656 0.0237 0.9176
Roe −0.9648 0.0171 0.0797 −0.1415 0.0183 0.0480 0.9354
Continuous −0.9465 0.0234 0.1304 −0.2533 −0.0136 0.1058 0.9465
Alternating −0.9865 0.1227 0.0831 −0.1129 −0.0407 0.0404 0.9865

∆x = 1/20, fini = u2/2 α1 α2 α3 α4 α5 α6 f(0)− f(1)
Lax-Friedrichs −0.9136 0.2220 0.1907 −0.1070 0.0666 −0.0320 0.9136
Roe −0.9536 0.1403 0.1201 −0.0611 0.0241 −0.0318 0.9536
Continuous −0.9125 0.1879 0.3727 −0.1332 −0.0488 −0.1111 0.9125
Alternating −0.9782 0.3017 0.0404 −0.0288 0.0169 −0.0267 0.9782

Table 1: Experiment 1. Values for the parameters found after 12 iterations of the descent
algorithm with the different methods. The last column contains the value f(0) − f(1), which
must be 1 for the minimizers of the continuous functional without penalization. We assume
that the Courant number is ∆t/∆x = 0.5 and the algorithm is initialized with the indicated
f = fini.



Figure 6: Experiment 1. Log of the functional versus the number of iterations for the different
methods. ∆t/∆x = 1/20 (upper left) and 1/40 (upper right) with initialization f = 0. The
lower figure correspond to the initialization f(u) = u2/2 and ∆x = 1/20.



u0 ud and u(x, T ) at initialization

parameters α1 α2 α3 α4 α5 α6

Lax-Friedrichs 0.4601 0.5786 0.0016 −0.0954 −0.0034 −0.0383
Roe −0.5497 1.4065 −0.0901 0.1191 −0.0165 0.0446
Continuous −0.5326 1.0487 −0.0246 0.0244 −0.0020 0.0030
Alternating 0.4902 0.1256 0.0276 −0.0804 0.0037 −0.0110

Table 2: Experiment 3. Optimal values for the parameters with the different methods



Figure 7: Experiment 2. Log of the functional versus the number of iterations for the different
methods.



Figure 8: Experiment 2. Target and solution at time T = 1 with the optimal f found with the
Lax-Friedrichs (upper left), Roe (upper right), continuous (lower left) and Alternating (lower
right) methods.
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