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Let

P =
∑

|α|≤m
aα(y)∂

α
y , y ∈ Ω ⊂ Rn

P (pseudo)differential operator locally solvable:

∀y0 ∈ Ω, ∃V neighbourhood of y0 such that

∀f ∈ D(V ) ∃u ∈ D′(V ) verifying

Pu = f in V

Remark. Otherwise f ∈ Hs, u ∈ Hs′, s, s′ ∈ R
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Theorem. (Nirenberg-Treves, Beals-Fefferman, Moyer,

Hörmander, Lerner, Dencker)

• P differential loc.solv. ⇔ P verifies condition (P )

• P pseudodifferential loc.solv. ⇔ P verifies condi-

tion (Ψ)
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pm =
∑

|α|=m
aα(y)ξα principal symbol of P

Bicharacteristics of <pm

dy

ds
= ∇ξ<pm(y, ξ)

dξ

ds
= −∇y<pm(y, ξ)

(P ) on every null-bicharacteristic of <pm, =pm does not
change sign

(Ψ) on every null-bicharacteristic of <pm, =pm does not
change sign from − to +

Remark. P differential ⇒ (P ) equivalent to (Ψ)
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In Theorem ”loc.solv. ⇔ (P )” we need 2 conditions:

A) some regularity of the coefficients

B) P operator of principal type (i.e. if pm(y0, ξ0) = 0

for some ξ0 6= 0 ⇒ ∇ξpm(y0, ξ0) 6= 0)

We will consider some cases of operators violating

condition A) or B)
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Not A)

• (F.C.-S.Spagnolo, ′89)

Consider the strictly hyperbolic operator

P = ∂2
t − ∂x(A(t, x)∂x)

with

0 < λ−1 ≤ A(t, x) ≤ λ
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If |∂tA(t, x)| ≤ M , it is well known that the Cauchy

Problem
Pu = f

u(0, x) = u0(x), ∂tu(0, x) = u1(x)
(CP)

is uniquely solvable, that is

∀ u0 ∈ H1, u1 ∈ H0, f ∈ C([0, T ], H0)

∃! u solution of (CP) ⇒ P loc. solv.
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A less regular (F.C.-E.De Giorgi-S.Spagnolo, ′79)

A(t, x) ≡ a(t)

|a(t+ τ)− a(t)| ≤ c|τ || log |τ ||, |τ | ≤ 1/2

⇒ (CP) well posed in H∞, that is:

∀ u0 ∈ Hs+1, u1 ∈ Hs (for simplicity f ≡ 0)

∃! u solution of (CP) such that for some β > 0 and any s

‖u(t, ·)‖Hs+1−βt + ‖ut(t, ·)‖Hs−βt

≤ ‖u0‖Hs+1 + ‖u1‖Hs
(EE)

that is we have a loss of derivatives
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• (F.C.-N.Lerner, ’95)

Analagous result for the case

A(t, x) ∈ LogLip([0, T ]× Rdx)

(EE) true for |s| ≤ 1, s− βt > −1

• (F.C.-G.Métivier, ’08)

Local result: A(t, x) defined in Ω ⊂ Rt × Rdx open,

A ∈ LogLip ⇒ (CP) locally well posed with loss of

derivatives. In particular, for A(t, x) ∈ LogLip, P is

locally solvable.
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It is possible to show that LogLip is the minimal possible

regularity in order to have (CP) well posed:

∃A(t) ∈
⋂
α<1

C0,α, λ−1 ≤ A ≤ λ, ∃u0, u1 ∈ H∞

such that (CP) has no distributional solution in [0, T ]×A
∀T > 0, ∀A open with 0 ∈ A.

More precisely ∀ω(τ) with ω(τ)
τ→0+
−→ +∞, there exists

A(t) ∈ ω − LogLip:

|A(t+ τ)−A(t)| ≤ C|τ || log |τ ||ω(|τ |), |τ | ≤ 1/2

such that (CP) has no solution.
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Question: local solvability for ∂2
t − ∂x(A(t, x)∂x)?

Evidently if A = A(t) or if A = A(x) we have local

solvability.

But for A(t, x), with λ−1 ≤ A(t, x) ≤ λ?
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Theorem. There exists a(t) with 0 < λ−1 ≤ a ≤ λ

a ∈
⋂
α<1

C0,α(R), a ∈ C∞(R \ {0})

such that the equation(
∂2
t − ∂x

(
a(t)

a(x)
∂x

))
u = x, (1)

has no solution in any neighbourhood Ω of 0:

@ solution u ∈ C1(Ω)

@ u ∈ D′(Ω) solution in Ω ∩ {t 6= 0} ∩ {x 6= 0}

More precisely, for any ω(τ) such that ω(τ)
τ→0+
−→ +∞,

there exists a ∈ ω−LogLip such that (1) has no solution.
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Idea of the construction (the case a ∈
⋂
α<1C

0,α)

Let wε the solution of
w′′ε (τ) + αεwε(τ) = 0

wε(0) = 1 w′ε(0) = 0

where

αε(τ) ' 1− ε sin 2τ + ε2 sin2 τ

Then |αε − 1| ≤Mε, |α′ε(τ)| ≤Mε,

wε(τ) = pε(τ)e
−ε|τ |

for some pε 2π-periodic on {τ > 0} and on {τ < 0}
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Moreover

|wε|+ |w′ε|+ |w′′ε | ≤ c∫ 2π

0
wε dτ ≥ γε (γ > 0)

As a consequence we have, for τ = ±2πν, ν ∈ N,

wε(τ) = e−ε|τ |, w′ε(τ) = 0, w′′ε (τ) = e−ε|τ |

M, c, γ constants independent on ε.

wε exponentially decreasing
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Now we define the function a(t)

Let us consider the sequences

ρk = 4π2−k, hk = 22Nk, εk = h−1
k (loghk)

3

N so large that, for any k, we have

εk ≤
1

2M

4M
k−1∑
j=1

εjhjρj ≤ εkhkρk

2M
∞∑

j=k+1

εjρj ≤ εkρk
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Now let us define

tk =
ρk
2

+
∞∑

j=k+1

ρj

Ik =
[
tk −

ρk
2
, tk +

ρk
2

]
so Ik and Ik+1 are contiguous, and

Ik −→ {0} for k →∞

Finally let a(t) be defined

a(t) =


αεk(hk(t− tk)) t ∈ Ik

1 t ∈ R \
∞⋃
k=1

Ik

It is easy to see that a ∈ C0,α, ∀α < 1
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Let us pose

A(t, x) =
a(t)

a(x)
, ψk(t) = wεk(hk(t− tk))

so that

ψ′′k + h2
ka(t)ψk = 0 in Ik

and so

ψk(tk ±
ρk
2

) = e
−εkρkhk/2, ψ′k(tk ±

ρk
2

) = 0

∫
Ik
ψk(t) dt ≥ 2γεkh

−1
k

and finally

vk(t, x) = ψk(t)ψ
′
k(x)

18



Then

(vk)tt − (A(t, x)(vk)x)x = 0 on Qk = Ik × Ik (?)

Let be now u(t, x) ∈ C1(W ) solution of

utt − (A(t, x)ux)x = x (??)

in a neighbourhood W of (0,0).

By pairing (?) and (??) we obtain, for k large,∫
∂Qk

[(utvk − u(vk)t)νt −A(t, x)(uxvk − u(vk)x)νx] dσ

=
∫∫
Qk
xvk dtdx

(�)

where (νt, νx) is the exterior normal to ∂(Ik× Ik) = ∂Qk
and dσ the one-dimensional measure.
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But (�) becomes false for k large enough.

We have indeed

|vk|+ |(vk)t|+ |(vk)x| ≤ ch2
ke
−εkhkρk/2 on ∂Qk

Introducing this estimate in (�), we obtain∣∣∣∣∣
∫∫
Qk
xvk dtdx

∣∣∣∣∣ ≤ ch2
ke
−εkhkρk/2

On the other hand∫∫
Qk
xvk dtdx = −

∫∫
Qk
ψk(t)ψk(x) dtdx

+
∫
∂Qk

xψk(t)ψk(x) dσ
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Now∫∫
Qk
ψk(t)ψk(x) dtdx =

(∫
Ik
ψk(s) ds

)2

≥ 4γ2ε2kh
−2
k

while ∣∣∣∣∣
∫
∂Qk

xψk(t)ψk(x) dσ

∣∣∣∣∣ ≤ ce
−εkhkρk/2.

In conclusion we get

γ2ε2kh
−2
k ≤ ch2

ke
−εkhkρk/2, false for k →∞
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Not B)

• (F.C.-L.Pernazza-F.Treves, ’03)

• (F.C.-P.Cordaro-L.Pernazza, in progress)

We will consider

Lu = ∂tu−
d∑

i,j=1

∂xi(aij∂xju)−
d∑

j=1

bj∂xju− cu = f (?)

aij, bj, c smooth functions in Ω ⊂ Rd+1

aij real valued
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(?) may be not locally solvable:

• Kannai ′71: L = ∂t + t
d∑

j=1
∂2
xj

• Similarly: L = ∂t + t2k+1
d∑

j=1
∂2
xj

The main point here is that the symbol A(t, ξ) = t|ξ|2
(respectively = t2k+1|ξ|2) changes sign from − to +

with t.

This simple observation would lead one to believe that

the key resides in the condition (Ψ) (Nirenberg-Treves)
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For (?) the condition (Ψ) could be taken

(Ψ̃)



@ξ ∈ Rd s. t. the real function

∑
aij(t, x)ξiξj change sign from − to +

along the integral curves of the vector field

X = ∂t −
d∑

j=1
<bj(t, x)∂xj

Remark. Property (Ψ̃), as stated here, is not invariant.
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The necessity of (Ψ̃) is given credence by the following

weakly hyperbolic example, due to N.Lerner-K.Pravda

Starov:

Pk = ∂2
t − αk(x2)∂

2
x1

+ ∂x2, k = 1,2, . . .

where, for any k, αk(x2) is a decreasing Ck function

with

αk(x2) > 0 for x2 < 0, αk(x2) ≡ 0 for x2 ≥ 0

They show directly Pk not locally solvable near 0.
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But this is not a good condition: there are examples

not verifying (Ψ̃), but locally solvable:

P = ∂t + (∂x1∂x2 + t∂2
x2

) in Rt × R2
x

Here the symbol of A is ξ2(ξ1+tξ2): (Ψ̃) is not verified.

But x2 − tx1 7→ x2 transforms the operator P in

∂t − x1∂x2 + ∂x1∂x2

Then

e−x
2
1/2P (ex

2
1/2u) = (∂t + ∂x1∂x2)u

costant coefficients!
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Evolution operators for which condition (Ψ̃) determines

solvability

L = ∂t + εt`
d∑

i,j=1

∂xi(aij(t, x)∂xj)

+
d∑

j=1

bj(t, x)∂xj + c(t, x)

where ε = ±1, Q(t, x, ξ, η) =
∑
aijξiηj positive definite

for (t, x) = (0,0)

Theorem (∗).
` even ⇒ L locally solvable

` odd ⇒ (L loc. solv. ⇐⇒ ε = −1)
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Sketch of the proof

If ` = 2r we consider

<(−L∗u, e−2λtu) = λ||e−λtu||2 − ε
∫
Ω
t2rQ(∇xu, e−2λt∇xu) dxdt

+ <
∫
Ω
e−2λt(Xu)u dxdt−

1

2

∫
Ω
c′e−2λt|u|2 dxdt

where c′ = c−
∑
∂xjbj, X =

∑
bj∂xj

Then for |λ| large:

|<(L∗u, e−2λtu)| ≥ C(||e−λtu||2 + ||tre−λt∇xu||2)

⇓
local solvability

28



If ` = 2r+ 1, ε = −1, then

2<(−L∗u, tu) ≥ ||u||2 + 2||tr+1∇xu||2

− |(Xu, tu) + (tu,Xu) + 2<(c′u, tu)|

≥ ||u||2 −M ||
√
|t|u||2

where c′ = c−
∑
∂xjbj, X =

∑
bj∂xj, as before.

Hence, again, we have local solvability.

Finally, if ` = 2r + 1 and ε = 1, one argues by contra-

diction and shows that Hörmander’s inequality cannot

hold (eikonal equation, transport equations,. . . )
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Invariant formulation of Theorem (∗)

Consider real smooth operators near 0 ∈ Rn of the form:

Q = −
n∑

j,k=1

∂

∂yj

(
ϕ(y)`ajk(y)

∂

∂yk

)
−

n∑
j=1

bj(y)
∂

∂yj
+ c(y)

where ` ∈ N, and

(i) ϕ(0) = 0, dϕ(0) 6= 0 on ϕ−1(0)

(ii) ξ 7→ A(y)(ξ) =
∑
ajk(y)ξjξk ≥ 0, ∀y ∈ Ω
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(iii) rankA(0) = n− 1

(iv) A(y)(dϕ) = 0, ∀y ∈ Ω

(v) θ :=

∑
k

bk
∂ϕ

∂yk

 (0) 6= 0

Thanks to (i)-(iv) the sign of θ is invariantly defined.

If we choose coordinates (y1, . . . , yn) such that ϕ = yn
then (i)-(iv) ⇒ ajn = anj = 0, j = 1, . . . , n

⇒ ξ 7→
n−1∑
j,k=1

ajk(y)ξjξk positive definite
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Theorem (∗) becomes:
` even ⇒ Q locally solvable

` odd ⇒ (Q loc. solv. ⇐⇒ θ < 0)

For operators like Q we have then

Q locally solvable ⇐⇒ (Ψ′)

where

(Ψ′) :

 n∑
j=1

bj(y)
∂

∂yj

 sgn(ϕ`) ≤ 0 as a measure

sgn(τ) =


1 τ > 0
−1 τ < 0
0 τ = 0
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More generally, let Y be a C1 real vector field, a(y) a

real analytic function (a 6≡ 0). Then, if we define

µ[Y ; a] := Y (sgn(a))

µ can be extended to a real Radon measure.

Moreover

a does not change sign ⇒ µ[Y ; a] = 0

supp µ[Y ; a] ⊂ V := {y : a(y) = 0}
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Consider now operators P given by

P = X∗aX − Y + g

• X and Y real-valued, real analytic vector fields, de-

fined in Ω, neighbourhood of the origin in Rny

• a(0) = 0, Y 6= 0 in Ω

Now

A(y)(ξ) = −σX(y, ξ)2 (σX purely imaginary)

and so (ii) satisfied
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Definition. P satisfies (Ψ′) if

µ[Y ; a] ≤ 0

Remark. (Ψ′) is invariant under real analytic changes of

variables and under multiplication of P by a real analytic

factor.

Let now be

V0 := closure of {y ∈ V : a changes sign near y}

V0 is a semianalytic subset of Ω.

dim(V0) = n−1 when a changes sign (otherwise V0 = ∅)
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Theorem (•).

P satisfies (Ψ′)

Y transversal to V0

⇒ P locally solvable

Corollary.

sgn(a) constant ⇒ P locally solvable
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A partial converse of Theorem (•):

Theorem. Let us consider again

P = X∗aX − Y + g

such that

1) a−1(0) hypersurface

2) X tangent to V0

3) (Ψ′) not satisfied


⇒ P not locally solvable
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Example. Let us consider the operator

P = ε(∂x + t∂t)
∗t3α(t, x)(∂x + t∂t)

+ (∂t + β(t, x)∂x) + g

with (t, x) ∈ R× R, α(t, x) > 0, ε = ±1. Then

P locally solvable ⇐⇒ ε = 1
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Solvability when (Ψ′) is not necessarily satisfied

Theorem.

Xa(0) 6= 0 ⇒ P locally solvable

The key ingredient in the proof is the method of con-

catenations (Gilioli-Treves)
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Question:

X transverse to V near the origin
⇓?

P locally solvable

Answer negative:

Pα = ∂∗t t
3∂t − ∂t + α∂x

with (t, x) ∈ R× R, α ∈ R. Indeed

Pα locally solvable ⇐⇒ α = 0
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