Local solvability beyond condition (Ψ)

Ferruccio Colombini

Benasque, August 2009

Joint works

- F.C.-S.Spagnolo ('89)
- F.C.-L.Pernazza-F.Treves ('03)
- F.C.-P.Cordaro-L.Pernazza (in progress)

Let

$$P = \sum_{|\alpha| \le m} a_{\alpha}(y) \partial_{y}^{\alpha}, \qquad y \in \Omega \subset \mathbb{R}^{n}$$

P (pseudo)differential operator locally solvable:

 $\forall y_0 \in \Omega, \quad \exists V \text{ neighbourhood of } y_0 \text{ such that}$ $\forall f \in \mathcal{D}(V) \quad \exists u \in \mathcal{D}'(V) \text{ verifying}$ Pu = f in VRemark. Otherwise $f \in H^s, \ u \in H^{s'}, \ s, s' \in \mathbb{R}$ **Theorem.** (*Nirenberg-Treves*, *Beals-Fefferman*, *Moyer*, *Hörmander*, *Lerner*, *Dencker*)

- P differential **loc.solv.** \Leftrightarrow P verifies condition (P)
- *P* pseudodifferential **loc.solv.** \Leftrightarrow *P* verifies condition (Ψ)

$$p_m = \sum_{|\alpha|=m} a_{\alpha}(y)\xi^{\alpha}$$
 principal symbol of P

Bicharacteristics of $\Re p_m$

$$\begin{cases} \frac{dy}{ds} = \nabla_{\xi} \Re p_m(y,\xi) \\ \frac{d\xi}{ds} = -\nabla_y \Re p_m(y,\xi) \end{cases}$$

- (P) on every null-bicharacteristic of $\Re p_m$, $\Im p_m$ does not change sign
- (Ψ) on every null-bicharacteristic of $\Re p_m$, $\Im p_m$ does not change sign from to +

Remark. P differential \Rightarrow (P) equivalent to (Ψ)

In Theorem "loc.solv. \Leftrightarrow (P)" we need 2 conditions:

A) some regularity of the coefficients

B) P operator of principal type (i.e. if $p_m(y_0, \xi_0) = 0$ for some $\xi_0 \neq 0 \Rightarrow \nabla_{\xi} p_m(y_0, \xi_0) \neq 0$)

We will consider some cases of operators violating condition *A*) or *B*)

Not A)

Consider the strictly hyperbolic operator

$$P = \partial_t^2 - \partial_x (A(t, x) \partial_x)$$

with

$$0 < \lambda^{-1} \le A(t, x) \le \lambda$$

If $|\partial_t A(t,x)| \leq M$, it is well known that the Cauchy Problem

$$\begin{cases} Pu = f \\ u(0, x) = u_0(x), \quad \partial_t u(0, x) = u_1(x) \end{cases}$$
(CP)

is uniquely solvable, that is

$$\forall u_0 \in H^1, u_1 \in H^0, f \in C([0,T], H^0)$$

 $\exists ! u \text{ solution of } (CP) \Rightarrow P \text{ loc. solv.}$

A less regular (F.C.-E.De Giorgi-S.Spagnolo, '79) $A(t,x) \equiv a(t)$ $|a(t + \tau) - a(t)| \le c|\tau| |\log |\tau||, |\tau| \le 1/2$ \Rightarrow (CP) well posed in H^{∞} , that is: $\forall u_0 \in H^{s+1}, u_1 \in H^s$ (for simplicity $f \equiv 0$) $\exists ! u \text{ solution of (CP) such that for some } \beta > 0 \text{ and any } s$ $\|u(t,\cdot)\|_{H^{s+1-\beta t}} + \|u_t(t,\cdot)\|_{H^{s-\beta t}}$ (EE) $\leq \|u_0\|_{H^{s+1}} + \|u_1\|_{H^s}$

that is we have a loss of derivatives

• (F.C.-N.Lerner, '95)

Analagous result for the case

 $A(t,x) \in \mathsf{LogLip}([0,T] \times \mathbb{R}^d_x)$ (EE) true for $|s| \leq 1, \; s - \beta t > -1$

• (F.C.-G.Métivier, '08)

Local result: A(t,x) defined in $\Omega \subset \mathbb{R}_t \times \mathbb{R}_x^d$ open, $A \in \text{LogLip} \Rightarrow (CP)$ locally well posed with loss of derivatives. In particular, for $A(t,x) \in \text{LogLip}$, P is locally solvable. It is possible to show that LogLip is the minimal possible regularity in order to have (CP) well posed:

$$\exists A(t) \in \bigcap_{\alpha < 1} C^{0,\alpha}, \quad \lambda^{-1} \le A \le \lambda, \quad \exists u_0, u_1 \in H^{\infty}$$

such that (CP) has no distributional solution in $[0,T] \times \mathcal{A}$ $\forall T > 0, \forall \mathcal{A} \text{ open with } 0 \in \mathcal{A}.$

More precisely $\forall \omega(\tau)$ with $\omega(\tau) \xrightarrow{\tau \to 0^+} +\infty$, there exists $A(t) \in \omega - \text{LogLip}$:

 $|A(t + \tau) - A(t)| \le C|\tau||\log |\tau||\omega(|\tau|), \quad |\tau| \le 1/2$

such that (CP) has no solution.

Question: local solvability for $\partial_t^2 - \partial_x (A(t,x)\partial_x)$?

Evidently if A = A(t) or if A = A(x) we have local solvability.

But for A(t,x), with $\lambda^{-1} \leq A(t,x) \leq \lambda$?

Theorem. There exists a(t) with $0 < \lambda^{-1} \le a \le \lambda$

$$a \in \bigcap_{\alpha < 1} C^{0, \alpha}(\mathbb{R}), \quad a \in C^{\infty}(\mathbb{R} \setminus \{0\})$$

such that the equation

$$\left(\partial_t^2 - \partial_x \left(\frac{a(t)}{a(x)}\partial_x\right)\right) u = x, \tag{1}$$

has no solution in any neighbourhood Ω of 0:

 \nexists solution $u \in C^1(\Omega)$

 $\nexists u \in \mathcal{D}'(\Omega)$ solution in $\Omega \cap \{t \neq 0\} \cap \{x \neq 0\}$

More precisely, for any $\omega(\tau)$ such that $\omega(\tau) \xrightarrow{\tau \to 0^+} +\infty$, there exists $a \in \omega$ -LogLip such that (1) has no solution. Idea of the construction (the case $a \in \bigcap_{\alpha < 1} C^{0,\alpha}$)

Let w_{ϵ} the solution of

$$\begin{cases} w_{\epsilon}''(\tau) + \alpha_{\epsilon} w_{\epsilon}(\tau) = 0\\ w_{\epsilon}(0) = 1 \quad w_{\epsilon}'(0) = 0 \end{cases}$$

where

$$\alpha_{\epsilon}(\tau) \simeq 1 - \epsilon \sin 2\tau + \epsilon^2 \sin^2 \tau$$

Then $|\alpha_{\epsilon} - 1| \leq M\epsilon$, $|\alpha'_{\epsilon}(\tau)| \leq M\epsilon$,
 $w_{\epsilon}(\tau) = p_{\epsilon}(\tau)e^{-\epsilon|\tau|}$

for some $p_{\epsilon} 2\pi$ -periodic on $\{\tau > 0\}$ and on $\{\tau < 0\}$

Moreover

$$|w_{\epsilon}| + |w_{\epsilon}'| + |w_{\epsilon}''| \le c$$
$$\int_{0}^{2\pi} w_{\epsilon} d\tau \ge \gamma \epsilon \qquad (\gamma > 0)$$

As a consequence we have, for $\tau = \pm 2\pi\nu$, $\nu \in \mathbb{N}$,

$$w_{\epsilon}(\tau) = e^{-\epsilon|\tau|}, \quad w'_{\epsilon}(\tau) = 0, \quad w''_{\epsilon}(\tau) = e^{-\epsilon|\tau|}$$

 M, c, γ constants independent on ϵ .

w_ϵ exponentially decreasing

Now we define the function a(t)

Let us consider the sequences

$$\rho_k = 4\pi 2^{-k}, \quad h_k = 2^{2^{Nk}}, \quad \epsilon_k = h_k^{-1} (\log h_k)^3$$

N so large that, for any k, we have

$$\epsilon_k \le \frac{1}{2M}$$

$$4M\sum_{j=1}^{k-1}\epsilon_jh_j\rho_j\leq\epsilon_kh_k\rho_k$$

$$2M\sum_{j=k+1}^{\infty}\epsilon_{j}\rho_{j}\leq\epsilon_{k}\rho_{k}$$

Now let us define

$$t_k = \frac{\rho_k}{2} + \sum_{j=k+1}^{\infty} \rho_j$$

$$I_k = \left[t_k - \frac{\rho_k}{2}, t_k + \frac{\rho_k}{2}\right]$$

so I_k and I_{k+1} are contiguous, and

$$I_k \longrightarrow \{0\}$$
 for $k \to \infty$

Finally let a(t) be defined

$$a(t) = \begin{cases} \alpha_{\epsilon_k}(h_k(t-t_k)) & t \in I_k \\ 1 & t \in \mathbb{R} \setminus \bigcup_{k=1}^{\infty} I_k \end{cases}$$

It is easy to see that $a\in C^{\mathbf{0},\alpha}$, $\forall \alpha<\mathbf{1}$

Let us pose

$$A(t,x) = \frac{a(t)}{a(x)}, \quad \psi_k(t) = w_{\epsilon_k}(h_k(t-t_k))$$

so that

$$\psi_k'' + h_k^2 a(t) \psi_k = 0 \quad \text{in } I_k$$

and so

$$\psi_k(t_k \pm \frac{\rho_k}{2}) = e^{-\epsilon_k \rho_k h_{k/2}}, \quad \psi'_k(t_k \pm \frac{\rho_k}{2}) = 0$$
$$\int_{I_k} \psi_k(t) \, dt \ge 2\gamma \epsilon_k h_k^{-1}$$

and finally

$$v_k(t,x) = \psi_k(t)\psi'_k(x)$$

Then

 $(v_k)_{tt} - (A(t,x)(v_k)_x)_x = 0$ on $Q_k = I_k \times I_k$ (*) Let be now $u(t,x) \in C^1(W)$ solution of

$$u_{tt} - (A(t, x)u_x)_x = x \qquad (\star\star)$$

in a neighbourhood W of (0,0).

By pairing (\star) and $(\star\star)$ we obtain, for k large,

$$\int_{\partial Q_k} \left[(u_t v_k - u(v_k)_t) \nu_t - A(t, x) (u_x v_k - u(v_k)_x) \nu_x \right] d\sigma$$
$$= \iint_{Q_k} x v_k \, dt dx \tag{\Box}$$

where (ν_t, ν_x) is the exterior normal to $\partial(I_k \times I_k) = \partial Q_k$ and $d\sigma$ the one-dimensional measure. But (\Box) becomes false for k large enough.

We have indeed

$$|v_k| + |(v_k)_t| + |(v_k)_x| \le ch_k^2 e^{-\epsilon_k h_k \rho_{k/2}}$$
 on ∂Q_k

Introducing this estimate in (\Box) , we obtain

$$\iint_{Q_k} x v_k \, dt dx \, \bigg| \le c h_k^2 e^{-\epsilon_k h_k \rho_{k/2}}$$

On the other hand

$$\iint_{Q_k} xv_k \, dt dx = -\iint_{Q_k} \psi_k(t)\psi_k(x) \, dt dx + \int_{\partial Q_k} x\psi_k(t)\psi_k(x) \, d\sigma$$

Now

$$\iint_{Q_k} \psi_k(t) \psi_k(x) \, dt dx = \left(\int_{I_k} \psi_k(s) \, ds \right)^2 \ge 4\gamma^2 \epsilon_k^2 h_k^{-2}$$

while

$$\left|\int_{\partial Q_k} x\psi_k(t)\psi_k(x)\,d\sigma\right| \le ce^{-\epsilon_k h_k \rho_{k/2}}.$$

In conclusion we get

$$\gamma^2 \epsilon_k^2 h_k^{-2} \le c h_k^2 e^{-\epsilon_k h_k \rho_{k/2}}, \quad \text{false for } k \to \infty$$

Not B)

- (F.C.-L.Pernazza-F.Treves, '03)
- (F.C.-P.Cordaro-L.Pernazza, in progress)

We will consider

$$Lu = \partial_t u - \sum_{i,j=1}^d \partial_{x_i} (a_{ij} \partial_{x_j} u) - \sum_{j=1}^d b_j \partial_{x_j} u - cu = f \quad (\star)$$

 a_{ij}, b_j, c smooth functions in $\Omega \subset \mathbb{R}^{d+1}$

 a_{ij} real valued

(*) may be not locally solvable:

• Kannai '71:
$$L = \partial_t + t \sum_{j=1}^d \partial_{x_j}^2$$

• Similarly:
$$L = \partial_t + t^{2k+1} \sum_{j=1}^d \partial_{x_j}^2$$

The main point here is that the symbol $A(t,\xi) = t|\xi|^2$ (respectively = $t^{2k+1}|\xi|^2$) changes sign from - to + with t.

This simple observation would lead one to believe that the key resides in the condition (Ψ) (Nirenberg-Treves)

For (*) the condition (Ψ) could be taken $\frac{\exists \xi \in \mathbb{R}^d \text{ s. t. the real function}}{\sum a_{ij}(t,x)\xi_i\xi_j} \text{ change sign from } - \text{ to } + \\
\text{ along the integral curves of the vector field}} \\
X = \partial_t - \sum_{j=1}^d \Re b_j(t,x)\partial_{x_j}$

Remark. Property $(\tilde{\Psi})$, as stated here, is not invariant.

The necessity of $(\tilde{\Psi})$ is given credence by the following weakly hyperbolic example, due to N.Lerner-K.Pravda Starov:

$$P_k = \partial_t^2 - \alpha_k(x_2)\partial_{x_1}^2 + \partial_{x_2}, \quad k = 1, 2, \dots$$

where, for any $k, \ \alpha_k(x_2)$ is a decreasing C^k function with

 $\alpha_k(x_2) > 0$ for $x_2 < 0$, $\alpha_k(x_2) \equiv 0$ for $x_2 \ge 0$

They show directly P_k not locally solvable near 0.

But this is not a good condition: there are examples not verifying $(\tilde{\Psi})$, but locally solvable:

$$P = \partial_t + (\partial_{x_1} \partial_{x_2} + t \partial_{x_2}^2) \quad \text{in } \mathbb{R}_t \times \mathbb{R}_x^2$$

Here the symbol of A is $\xi_2(\xi_1 + t\xi_2)$: $(\tilde{\Psi})$ is not verified. But $x_2 - tx_1 \mapsto x_2$ transforms the operator P in

$$\partial_t - x_1 \partial_{x_2} + \partial_{x_1} \partial_{x_2}$$

Then

$$e^{-x_1^2/2}P(e^{x_1^2/2}u) = (\partial_t + \partial_{x_1}\partial_{x_2})u$$

costant coefficients!

Evolution operators for which condition $(\tilde{\Psi})$ determines solvability

$$L = \partial_t + \epsilon t^{\ell} \sum_{i,j=1}^d \partial_{x_i} (a_{ij}(t,x) \partial_{x_j})$$
$$+ \sum_{j=1}^d b_j(t,x) \partial_{x_j} + c(t,x)$$

where $\epsilon = \pm 1$, $Q(t, x, \xi, \eta) = \sum a_{ij}\xi_i\eta_j$ positive definite for (t, x) = (0, 0)**Theorem (*).**

 $\left\{ \begin{array}{l} \ell \text{ even } \Rightarrow L \text{ locally solvable} \\ \ell \text{ odd } \Rightarrow (L \text{ loc. solv. } \iff \epsilon = -1) \end{array} \right.$

Sketch of the proof

If $\ell = 2r$ we consider

$$\Re(-L^*u, e^{-2\lambda t}u) = \lambda ||e^{-\lambda t}u||^2 - \epsilon \int_{\Omega} t^{2r} Q(\nabla_x u, e^{-2\lambda t} \nabla_x \overline{u}) \, dx dt + \Re \int_{\Omega} e^{-2\lambda t} (Xu) \overline{u} \, dx dt - \frac{1}{2} \int_{\Omega} c' e^{-2\lambda t} |u|^2 \, dx dt$$

where
$$c' = c - \sum \partial_{x_j} b_j$$
, $X = \sum b_j \partial_{x_j}$

Then for $|\lambda|$ large:

If $\ell = 2r + 1$, $\epsilon = -1$, then $2\Re(-L^*u, tu) \ge ||u||^2 + 2||t^{r+1}\nabla_x u||^2$ $-|(Xu, tu) + (tu, Xu) + 2\Re(c'u, tu)|$ $\ge ||u||^2 - M ||\sqrt{|t|} u||^2$

where $c' = c - \sum \partial_{x_j} b_j$, $X = \sum b_j \partial_{x_j}$, as before.

Hence, again, we have local solvability.

Finally, if $\ell = 2r + 1$ and $\epsilon = 1$, one argues by contradiction and shows that Hörmander's inequality cannot hold (eikonal equation, transport equations,...)

Invariant formulation of Theorem (*)

Consider real smooth operators near $0 \in \mathbb{R}^n$ of the form:

$$Q = -\sum_{j,k=1}^{n} \frac{\partial}{\partial y_j} \left(\varphi(y)^{\ell} a_{jk}(y) \frac{\partial}{\partial y_k} \right) - \sum_{j=1}^{n} b_j(y) \frac{\partial}{\partial y_j} + c(y)$$

where $\ell \in \mathbb{N}$, and

(i)
$$\varphi(0) = 0$$
, $d\varphi(0) \neq 0$ on $\varphi^{-1}(0)$

(ii)
$$\xi \mapsto A(y)(\xi) = \sum a_{jk}(y)\xi_j\xi_k \ge 0, \ \forall y \in \Omega$$

(iii) rank
$$A(0) = n - 1$$

(iv)
$$A(y)(d\varphi) = 0, \forall y \in \Omega$$

(v)
$$\theta := \left(\sum_{k} b_k \frac{\partial \varphi}{\partial y_k}\right) (0) \neq 0$$

Thanks to (i)-(iv) the sign of θ is invariantly defined.

If we choose coordinates (y_1, \ldots, y_n) such that $\varphi = y_n$ then (i)-(iv) $\Rightarrow a_{jn} = a_{nj} = 0, j = 1, \ldots, n$

$$\Rightarrow \xi \mapsto \sum_{j,k=1}^{n-1} a_{jk}(y) \xi_j \xi_k \text{ positive definite}$$

Theorem (*) becomes:

$$\begin{cases} \ell \text{ even } \Rightarrow Q \text{ locally solvable} \\ \ell \text{ odd } \Rightarrow (Q \text{ loc. solv. } \iff \theta < 0) \end{cases}$$

For operators like \boldsymbol{Q} we have then

$$Q$$
 locally solvable $\iff (\Psi')$

where

$$(\Psi'): \left(\sum_{j=1}^{n} b_j(y) \frac{\partial}{\partial y_j}\right) \operatorname{sgn}(\varphi^{\ell}) \le 0 \text{ as a measure}$$
$$\operatorname{sgn}(\tau) = \begin{cases} 1 & \tau > 0\\ -1 & \tau < 0\\ 0 & \tau = 0 \end{cases}$$

More generally, let Y be a C^1 real vector field, a(y) a real analytic function ($a \neq 0$). Then, if we define

$$\mu[Y;a] := Y(\operatorname{sgn}(a))$$

 μ can be extended to a real Radon measure.

Moreover

a does not change sign $\Rightarrow \mu[Y; a] = 0$

 $\mathsf{supp}\ \mu[Y;a] \subset V := \{y : a(y) = 0\}$

Consider now operators P given by

$$P = X^* a X - Y + g$$

• X and Y real-valued, real analytic vector fields, defined in Ω , neighbourhood of the origin in \mathbb{R}^n_y

•
$$a(0) = 0, \quad Y \neq 0 \text{ in } \Omega$$

Now

$$A(y)(\xi) = -\sigma_X(y,\xi)^2$$
 (σ_X purely imaginary)

and so (ii) satisfied

Definition. *P* satisfies (Ψ') if

 $\mu[Y;a] \leq \mathsf{0}$

Remark. (Ψ') is invariant under real analytic changes of variables and under multiplication of *P* by a real analytic factor.

Let now be

 $V_0 :=$ closure of $\{y \in V : a \text{ changes sign near } y\}$

 V_0 is a semianalytic subset of Ω .

dim $(V_0) = n-1$ when a changes sign (otherwise $V_0 = \emptyset$)

Theorem (•).

$$P \text{ satisfies } (\Psi')$$

 $Y \text{ transversal to } V_0$
 $\Rightarrow P \text{ locally solvable}$

Corollary.

sgn(a) constant $\Rightarrow P$ locally solvable

A partial converse of **Theorem** (\bullet) :

Theorem. Let us consider again

$$P = X^* a X - Y + g$$

such that

1)
$$a^{-1}(0)$$
 hypersurface
2) X tangent to V_0
3) (Ψ') not satisfied
$$P$$
 not locally solvable

Example. Let us consider the operator

$$P = \epsilon (\partial_x + t\partial_t)^* t^3 \alpha(t, x) (\partial_x + t\partial_t) + (\partial_t + \beta(t, x) \partial_x) + g$$

with $(t,x) \in \mathbb{R} \times \mathbb{R}$, $\alpha(t,x) > 0$, $\epsilon = \pm 1$. Then

P locally solvable $\iff \epsilon = 1$

Solvability when (Ψ') is not necessarily satisfied **Theorem.**

 $Xa(0) \neq 0 \Rightarrow P$ locally solvable

The key ingredient in the proof is the *method of concatenations* (Gilioli-Treves)

Question:

X transverse to V near the origin \Downarrow ? P locally solvable

Answer negative:

$$P_{\alpha} = \partial_t^* t^3 \partial_t - \partial_t + \alpha \partial_x$$

with $(t, x) \in \mathbb{R} \times \mathbb{R}$, $\alpha \in \mathbb{R}$. Indeed

 P_{α} locally solvable $\iff \alpha = 0$