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Motivation of POD in Context of PDE

1 (Vertical) Method of Numerical Treatment of PDE:
Galerkin Ansatz with finite dimensional test space (say FE)
Choice of basis functions  System of ODEs
Solve ODEs for coefficients of that basis (many in FE case!)

2 Idea of POD Reduced-order Modeling:
Determine “intelligent” basis which contains characteristics of
the expected solution
Obtain a low dimensional problem in the respective coefficients
Hope: #POD-Basis � #FE-Basis

3 Method:
Take “snapshots” of the PDE (FE-)solution y
POD: Extract key ingredients to determine an “optimal” basis
Use the span of this basis as test space in Galerkin
(Project the dynamical system on the span)

Problem for optimization:
Snapshots may not be valid for all choices of controls

1 / 12
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Overview of POD Reduced-Order Modeling

PDE Problem ODE System
Full Discrete

System

Discretize
in Space

Discretize
in Time

Snaphots Projection
POD modes

obtain

Cont. Low-
Order Model

Discrete Low-
Order ModelDiscretize

in Time
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POD for FE Discretizations

Snapshot Locations: {tj}nj=1 ⊂ [0,T ]

Snapshot Ensemble: V := span{yj : yj FE vector at tj}nj=1

Projection: P`y =
∑`

k=1 (y , ψk)X ψk for X = Vh or X = Hh

Aim: On average, best approximate V by V` := span(B`),
with ONB B` = {ψk}`k=1

POD Problem:

min
B`

n∑

j=1

αj

∥∥∥yj − P`yj

∥∥∥
2

X
s. t. (ψi , ψj)X = δij

Solution:
{ψk}`k=1 is given by the “largest” ` left singular vectors of
essentially the Ensemble matrix Y := [y1, . . . , yn]
These vectors may be characterized by the EVP

Rh = YY Tψi = λiψi , i = 1, · · · , `
3 / 12
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Optimal Control Problem

1 Linear-Quadratic Control Problem:
For Uad ⊂ U closed, convex, nonempty:

min
u∈Uad

J(y , u) =
β

2

∫ T

0
‖y(t)− z(t)‖2

H dt +
1

2
‖u‖2

U

s. t (y , u) ∈W (0,T )× Uad solves

d

dt
(y(t), ϕ)H + a(y(t), ϕ) = 〈u(t), ϕ〉

V ′,V
, ϕ ∈ V , t ∈ [0,T ]

(y(0), ϕ)H = (y0, ϕ)H , ϕ ∈ V

2 Suboptimal Control:
Choose V := V` = span({ψk}`k=1)
Optimality conditions involve “Adjoint System”

 use POD?

4 / 12
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Adaptive POD Algorithm – Problem with Basis Update

PDE Prob-
lem for u0

ODE System

Discretize
in Space

Snaphots Projection
POD modes

obtain

Low-Order Model

Suboptimal
Control Problem

include in

Suboptimal State

Suboptimal
Control

Replace
or Add!

“Heuristic”

solve Low
Order
Model

SOLVE!
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OS-POD Statement

For (y `, u) and (y , ψi , λi ), min J(y `, u) subject to

POD ROM (for t ∈ (0,T ] plus IC`)

∂

∂t
y `(t) = P`

y(u)

(
F (y `(t)) + Bu(t)

)

Full State (for t ∈ (0,T ] plus IC)

∂

∂t
y(t) = F (y(t)) + B(u(t))

POD Basis Condition

Ry(u)ψ
i = λiψi for i = 1, . . . , `

(
ψi , ψj

)
X

= δij for i , j = 1, . . . , `

Defining

Rv :=

∫ T

0
(v , y(u))X y(u) dt, P`

y(u)w :=
∑̀

k=1

(
ψ`

y(u),w
)

X
ψ`

y(u)

6 / 12
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Remarks on OS-POD

Established Analysis
For fixed `, convergence is shown by Kunisch/Volkwein ’08
For fixed u, convergence is shown for `→∞ (Henri ’03)

TODO
Convergence of OS-POD w.r.t. `→∞
Analysis for “non-continuous” POD (not “all snapshots”)
Including a POD System for the adjoint state?!

Discussion
Basis is updated without “engineering”
Problem size is significantly increased:
Eigenvalue Problem and full system solve included

Numerical Results
Kunisch/Volkwein ’08:
“Control of non-stationary burger’s equation”
Speedup factor in comparison to FE-SQP: 2 and 6

7 / 12
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FitzHugh-Nagumo Model

Idea:
Apply OSPOD to equation which challenges POD-ROM

Problem:
Extremly simplyfied “Monodomain Equation”
(Essentially HEq with strong non-linearity)

Challenge:
POD Basis represents time-averaged spatially shifted
correlation of snapshot data
Correlation for snapshots very small
 POD does not perform well

Numerical Result:
Also in interaction with D. Chapelle, INRIA France
1D-FE solution, RK or θ-scheme
Rather poor approximation for large basis: ` = 26
 computation time even lengthened(!)
Possibly “direction” not modeled correctly

8 / 12
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POD Approximation of FHN Solution (` = 26)

9 / 12
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What to Take Home

POD Method
“POD” essentially means “SVD”
“POD-ROM”:
Collect n snapshots of a dynamical system in ensemble matrix.
Use ` “largest” singular vectors as a Galerkin basis for ROM.
Representation of snapshots(!) is optimal for its rank

POD Suboptimal Control
Main problem: Basis Update
 Possible way out: OS-POD
Basis updated such that at the optimal solution, the basis
represents the key dynamics of the optimal state
Drawback: Computational effort increased

Open Problems?
Convergence analysis of OS-POOD for `→∞
OS-POD performance for challenging FHN model

10 / 12



POD and Optimal Control OS-POD Other/Further Projects

Contents

1 What I did: POD and Optimal Control
“Demystification” of POD-ROM
POD Suboptimal Control

2 What I do: OS-POD
Statement and Theory
Application of POD to FHN

3 What I shall do: Other/Further Projects



POD and Optimal Control OS-POD Other/Further Projects

Mathematical Projects

Compartment model
Together with Prof Keeling and Henry Kasumba, Graz
Establish exponential decay for solution of a
convection-diffusion system in semi-group framework

Closed-Loop Control
Involves Hamilton Jacobi Bellman Equation
Typical feasible dimensions of system are 5 to 10
 Model reduction highly desired
POD studied in this context by Kunisch/Xie ’04
Open Problems:
Use of OS-POD
Time-optimal case

SIAM Student Chapter of Graz
Providing “Student’s Union for Research”
“Research chain” from Undergrad to Postdoc
Informal seminars for students from students
Seminars with guest speakers; also on “soft skills”
German Courses

11 / 12
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Presentation and Layout of Mathematical Writing

Understanding mathematical structures with less effort
 Roles of items? Ideas? “Simply” conclusions?
 Interaction of text and diagrams (LATEX-Extensions)

Let students design/refine diagrams
 Interpretation skills improved
 Improve literature by studying it

Let (non-expert) recipient be aware of whole situation
 Decide what to understand – Organizing what to tell
 Pyramid structure

Finally, create global “Mathematical Knowledge Base”

Represent diagrams in multi-user DAG/database
Understand Lemma/Proposition/Proof as “Clustering”
“Classical documents” are reports from database

 Interactively zoomable Googlemaps of MathWorld

12 / 12
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First “Layout-Draft” in Diploma Thesis

A.1. Correlation Aspects of POD for Abstract Functions 143

Further Interpretation of the POD – Autocorrelation Let us now draw a connection of the
POD to autocorrelation by “interpreting” the POD operator. In particular, we introduce a kernel r
which is of the form of an autocorrelation (defined in (A.1)).

Corollary A.1.2 (Autocorrelation Property)
The POD operator RL is an integral operator whose kernel may be represented by an
averaged autocorrelation function r : Ω × Ω → R (w.r.t. the snapshots). In particular,
for ψ ∈ L2(Ω), the operator RL may be written as

(RLψ)(x) =
∫

Ω

ψ(z) r(x, z) dz with r(x, z) := 〈 y(t)(x) y(t)(z) 〉t∈Γ . (A.2)

Proof.
Recall that in the definition of a POD Problem, the average operation was assumed to
commute with the inner product. We may thus obtain the assertion by swapping the
average operation and the integration in the definition of the operator RL in Corollary
A.1.1.

Decomposition of Autocorrelation We have seen that the kernel of the POD operator is given
by an autocorrelation operator. We now wish to show that the POD modes actually decompose this
autocorrelation operator. (This result will enable us to prove that Coherent Structures (in the sense
proposed by Sirovich) may be obtained by POD modes.)
We prove this result in the fashion proposed in Volkwein 1999. Note however that the assertion may
also be obtained by means of “functional analysis” – in particular, the so called Mercer’s Theorem.

Proposition A.1.3 (Decomposition of the Autocorrelation Operator)
Let B` = {ψk}`k=1 denote a POD Basis determined by RL. Let r be the kernel of RL in
the sense of Corollary A.1.2. Then, there holds

r(x, z) =
∑

k∈N
λkψk(x)ψk(z). (A.3)

Proof.
Restating the denition of RL in (A.2), we have

(RLψ)(x) =
(
ψ(·), r(x, ·)

)
L2(Ω)

. (A.4)

Obviously, for every fixed x ∈ Ω, we see

r(x, ·) = 〈 y(t)(x) y(t)(·) 〉t∈Γ ∈ V = span(VP ),

since r(x, ·) basically denotes a weighted average of elements y(t)(·) ∈ VP .
Furthermore, {ψk}k∈N denotes an orthonormal basis for V. Hence, we may represent
r(x, ·) in terms of this basis, use equation (A.4) and finally use the fact that (for all
k ∈ N) ψk is an eigenvectors of RL. For arbitrary z ∈ Ω, we in this way find the
assertion:

r(x, z) =
∑

k∈N
(ψk(·), r(x, ·))L2(Ω) ψk(z) =

∑

k∈N
(RLψk)(x)ψk(z)

=
∑

k∈N
λkψk(x)ψk(z).



POD and Optimal Control OS-POD Other/Further Projects

Mathematical truth is not a matter of taste.

Its presentation is.
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Many thanks for your attention!
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