THE MONGE PROBLEM IN R¢
THIERRY CHAMPION AND LUIGI DE PASCALE

ABSTRACT. We consider the Monge problem in a convex bounded subset of R?. The
cost is given by a general norm, and we prove the existence of an optimal transport
map under the classical assumption that the first marginal is absolutely continuous
with respect to the Lebesgue measure. The approach we propose to solve this problem
does not use the disintegration of measures.

1. INTRODUCTION

The Monge problem has origin in the Mémoire sur la théorie des déblais et remblais
written by G. Monge [23], and may be stated as follows:

inf {/Q |z — T(@)|du(z) : T € T(M,V)} : (1.1)

where € is the closure of a convex open subset of R?, |- | denotes the usual Fuclidean
norm of R%, p,v are Borel probability measures on Q and 7 (u,v) denotes the set of
transport maps from p to v, i.e. the class of Borel maps 7" such that Ty = v (where
Tyu(B) := u(T~(B)) for each Borel set B).

In this paper we prove the following existence result for a generalization of the problem,
where the Euclidean norm | - | is replaced by a general norm on R

Theorem 1.1. Let || - || be a norm on RY and assume that p is absolutely continuous
with respect to the Lebesque measure £, then the problem

min {/Q |z — T(@)|dp(z) : T € T(u, ,,)} (1.2)

has at least one solution.

We emphasize the fact that we make no regularity assumption on the norm || - [|. On
the other hand, the assumption that the first marginal g should be absolutely continuous
with respect to the Lebesgue measure is classical and may be justified by Theorem 8.3
in Ambrosio et al. [4], which states that for any s < d there exists a measure p << H*
for which (1.2) does not have any solution.

The main difficulties in (1.2) are due to the facts that the objective functional is
non-linear in 7" and the set 7 (u,v) does not possess the right compactness properties
to apply the direct methods of the Calculus of Variations. A suitable relaxation was
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introduced by Kantorovich [21, 22| and it proved to be a decisive tool to deal with this
problem. Define the set of transport plans from y to v as

O(p,v) :={y € PAX Q) | mjy = p, mjy=v},

where P(2 x ) denotes the set of Borel probability measures on  x € and 7 denotes
the standard projection in the Cartesian product. The set II(u,v) is always non-empty
as it contains at least u ® v. Then Kantorovich proposed to study the problem

win{ [ o= sllar(ea) s 0 € M)} (13)

Problem (1.3) is convex and linear in +, then the existence of a minimizer may be
obtained by the direct method of the Calculus of Variations. To obtain the existence of
a minimizer for (1.2) it is then sufficient to prove that some solution v € II(u, v) of (1.3)
is in fact induced by a transport T' € T (u,v), i.e. may be written as v = (id x T);u.

Before describing the present work, let us review briefly other existence results for
(1.2). Sudakov [31] first proposed an efficient strategy to solve (1.2) for a general norm ||-|
on R?. However this method involved a crucial step on the disintegration of an optimal
measure v for (1.3) which was not completed correctly at that time, and has recently
been justified in the case of a strictly convex norm by Caravenna [11]. Meanwhile,
the problem (1.1) has been solved by Evans et al. [19] with the additional regularity
assumption that p and v have Lipschitz-continuous densities with respect to £¢, and
then by Ambrosio [1] and Trudinger et al. [32] for x and v with integrable density. For
C? uniformly convex norms the problem (1.2) has been solved by Caffarelli et al. [10]
and Ambrosio et al. [4], and finally for crystalline norms in R% and general norms in
R? by Ambrosio et al. [3]. The original proof of Sudakov was based on the reduction
of the transport problems to affine regions of smaller dimension, and all the proof we
listed above are based on the reduction of the problem to a 1-dimensional problem via a
change of variable or area-formula. In [12], we designed a different method which does
not require the reduction to 1-dimensional settings. However, we were able to carry on
one of the steps of our proof only in the case of strictly convex norms.

In this paper, we prove the existence of a solution to (1.2) for a general norm || - || on
R?. The originality of our method for the proof of Theorem 1.1 above is that it does
not require disintegration of measures and relies on a simple but powerful regularity
result (see Lemma 3.3 below), which is inspired by a previous regularity result obtained
in the study of an optimal transportation problem with cost functional in non-integral
form in [13]. In section §2, we introduce a variational approximation to select solutions of
(1.3) that have a particular monotonicity property. Section §3 is devoted to the notion of
density-regular points of a transport v and in particular to Lemma 3.3, which states that
a transport map 7 € II(u, v) is concentrated on such points. In the following section §4,
we infer from the preceding some technical regularity result for the particular solutions
of (1.3) previously selected. The proof of our main result Theorem 1.1 is finally derived
in §5, while some final comments are collected in §6.
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2. VARIATIONAL APPROXIMATION TO SELECT MONOTONE TRANSPORT PLANS

Following the line of |3, 10, 29|, we introduce a variational approximation to select
optimal transport plans for (1.3) which have some additional properties, and in the next
sections we shall prove that these particular optimal transport plans are induced by
transport maps. This procedure of choosing particular minimizers is the root of the idea
of asymptotic development by I'-convergence (see |5] and [6]) .

We denote by O;(u,v) the set of optimal transport plans for (1.3), and consider the
auxiliary problem:

win{ [ Jy=sPdr(en) 7€ O], (1)

where we remark the fact that the cost in consideration involves the euclidean norm |-| of
R?. Following §3.1 in [29], we introduce an approximating procedure for some particular
solutions of (2.1) (see Lemma 2.3 below). Given two Borel probability measures o and
08 on 2, we denote by

Wi(a, 8) = min{ [ e=slar s ve H(a,m}

the usual 1—Wasserstein distance associated to the norm | -||. Notice that problem (1.3)
then corresponds to Wy (u,v). For e > 0, we also set

1
C.loiv) i= TWileto) + [

for any v € P(Q x Q), where Card(-) denotes the cardinality of the support of the
measure. We emphasize the fact that the norm || - || appears in the two first terms of
C. while the Euclidean norm | - | appears only in the third term. We then consider the
following family of minimization problems (Dg).~¢ associated to (1.3) and (2.1):

(D) min{C.(v;v) :v € P(Q x Q), 7rﬁlfy = u}.

For any ¢ > 0 the problem (D.) admits at least one solution ~., with discrete second
marginal 71'?%.
We finally introduce the standard family of interpolated projections.

o= ylldy+ [ o yPdy+ 42 Card(ny)
Q QxQ

X

Definition 2.1. For ¢ € [0, 1] we will denote by P! the map
Pl: OxQ — Q
(z,y) — (1 —t)z+ty.

The following Proposition collects some properties of the minimizers of (D) for later
use, mainly inspired from [29].

Proposition 2.2. Let B be a Borel subset of 2 x Q. Let € > 0 and . be a solution for
(D:), and set pi. g := ﬂ'ﬁlfys | B and ve g := W?’YE | B. Then it holds

(1) the measure Ve | B is a solution of the problem

(D..5) min{ [ o=+ el Py :veHwe,B,ug,B)}
X
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where II(pe, B, Ve B) denotes the set of non-negative Borel measures with marginals

MHe,B and Ve By
(2) if pe,p € L®(Q) then for any t € (0,1) it holds

1P% (e [ B2 < (1 =) e, o< -

Proof. Since 7. is a solution of (D,), it is a solution of

min{ | (o=l +ele—sPiar iv € H(M,m?%)}- (22)
X

The claim (1) then follows from the linearity of the functional in problem (2.2) (e.g. see
proof of Lemma 4.2 in [3]).

The claim (2) is a direct application of Lemma 2 in §3.2 of [29], since by (1) the
measure .| B is an optimal transport plan between p. g, which is absolutely continuous
with respect to £¢, and the discrete measure ve g for the strictly convex cost (z,y) —
|z — y|| + el — y|? (see also the Appendix below). O

The link between the family of problems (D.) and (2.1) is given in the following
Lemma, whose proof coincides with that of Lemma 1 in §3.1 of [29] and will be given in
the appendix for sake of completeness.

Lemma 2.3. For any ¢ > 0 let v. be a solution of (D), then the sequence (7rﬁ2'yg) w*-
converges to v as € — 0. Moreover, any w*-limit as €, — 0 of a subsequence of solutions
(Ve Jken is a solution of (2.1).

The above Lemma suggests to introduce the following set of optimal transport plans
for (1.3).

Definition 2.4. We shall denote by Oz (p, ) the minimizers for (2.1) which are w*-limits
as g — 0 of a subsequence (7., )gen of minimizers of (Dg,).

We observe that, by definition, the minimizers 7. of problem (D,) are all probability
measures on {2 x ), and since their marginals converge as ¢ — 0 to p and v, we infer
that Oy (u,v) is not empty.

It is an important fact in the following that the local properties stated in Proposition
2.2 pass to the limit and are still valid for the elements of Os(u,v). Notice that, in
general, the restrictions of a sequence of weakly converging measures does not converge
without additional assumptions. The following lemma states that this is the case when
considering a sequence of transport plans with the same first marginals.

Lemma 2.5. Let (7:): a sequence in P(Q x Q) with w*—limit v € P(Q x Q) as € — 0,
and such that 7Tul’)/5 = 7Tﬁl'y = u for any € > 0, with i << L% Then for any Borel set

G C Q it holds v.|G x Q > |G x Q.
Proof. We have to prove that V ¢ € Cp(2 x )

/ xe@o@, ey — | xe@o@ydy(ey) ase—0.  (23)
QOxQ QxQ
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Since u << L4, it follows from Lusin’s Theorem that for all a > 0 there exists a closed
set F,, such that

XG|F, is continuous and p(Q2\ F) < a.
As a consequence for every « > 0 one has

the restriction of (z,y) — x¢(z)e(x,y) to F, x Q is continuous

and
limsup'Ys((Q \ Fa) X Q) < M(Q \ Fa) < a.
e—0
Then since (z,y) — xa(z)e(x,y) is bounded and then equiintegrable with respect to
(Ve )e>0, (2.3) follows from Proposition 5.1.10 of [2]. O

Finally, since an element of Oy (u, v) is a solution of (2.1), it enjoys a cyclical-monotonicity
property inherited from the cost (x,y) — |y — z|? (see remark 2.7 below), stated in the
following Proposition, whose proof may be derived from that of Lemma 4.1 in [3| and is
given in [12] (see Proposition 3.2 therein).

Proposition 2.6. Let v be a solution of (2.1), then v is concentrated on a o-compact
set I' with the following property:

V(z,y), (@@ y)el, zely] = (@-2) (y-y) =0, (24)
where - denotes the usual scalar product on RY.
Remark 2.7. A solution 7 of the classical transport problem associated to | - |?:

min{ [ ly=aPare) + A
QxQ

is known to be concentrated on a | - |?-cyclically monotone set T, that is:

V(x,y), (x',y') € Fa (1' - 33,) : (y - y') > 0.

In (2.4), the restriction that = should be in [2/,y/] to get the inequality has origin in the
fact that the constraint in (2.1) is O1(u, ) in place of II(u, v).

Remark 2.8. The reason to deal with o-compact sets I', in the above proposition as well
as in the following, is that the projection 7!(I') is also o-compact, and in particular is a
Borel set.

3. A PROPERTY OF TRANSPORT PLANS

We begin by considering some general properties of transport plans. This section is
independent of the transport problem (1.3), and some of the techniques detailed below
are refinements of similar ones which were first applied in [13] in the framework of non-
classical transportation problems involving cost functionals not in integral form.

Definition 3.1. Let v € II(u, v) be a transport plan and I" a o-compact set on which it
is concentrated. For y € (2 and r > 0 we define

F_l(B(y,r)) = 7T1(F N (2 x B(y,r))).
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In other words, when given a o-compact set I' on which « is concentrated, the set
I'~Y(B(y,r)) is the set of those points whose mass (with respect to u) is partially or
completely transported to B(y, ) by the restriction of v to I'. We may justify this slight
abuse of notations by the fact that v should be thought of as a device that transports
mass. Notice also that I =!(B(y,r)) is a o-compact set.

Since this notion is important in the sequel, we recall that when a function f is locally

integrable for the Lebesgue measure £¢, one has

. 1 -
lin T /B W = F@lds = 0

for almost every x in 2. These points x are usually called Lebesgue points of f. When
A is an L% measurable subset of Q, we shall call Lebesgue point of A any element z € A
which is a Lebesgue point of the characteristic function f = x4 of A, and then satisfies
d

lim LYANB(x,r)) _ L

r—0  L4B(z,r))
In the following, we shall denote by Leb(f) (resp. Leb(A)) the set of points z € Q (resp.
x € A) which are Lebesgue points of f (resp. A). Moreover we will denote by support(f)
the set of points z € ) such that fB(ax " f(z)dz > 0 for any r > 0.

Definition 3.2. We will call density of an absolutely continuous measure A the function

: A(B(z,r))
) =limsup ————-~.
o) =P ZiBa. )
Then the Lebesgue points of the density of A are uniquely determined as well as the
value of g at those points.

The following Lemma is an essential step in the proof of Proposition 4.2 and Theorem
5.1 below. This result is a refinement of Lemma 5.2 from [13] and Lemma 4.3 in [12],
and its proof follows the line of those Lemmas. It in fact encompasses those results, as
Remark 3.5 below shows.

Lemma 3.3. Assume that i << L% with density denoted by f. Let v € (u,v), and
' a set on which ~ is concentrated. Then there exists a o-compact subset D(T) of
' N support(y) on which 7 is concentrated, and such that for any (z,y) € D(T') and
r >0, there exist y € Q and 7 > 0 such that

y € B(§,7) C B(y,r), x € Leb(f)NLeb(f), f(z)<+oo and f(z)>0 (3.1)
where f is the density of ﬂ'ul'yLQ x B(§,7) with respect to L.

Proof. Let (yn)n be a dense sequence in Q. For each (n,k) € N? we set v, := v[Q x
B(yn, k#ﬂ) and define f, ;, to be the density of Wul%l,k with respect to £%. We notice that
for any (z,y) € QxQ and r > 0 there exists n, k € N such that y € B(ys, k%_l) C B(y,r),

and that if (z,y) is in the support of 4 then it is in the support of 7, , and z is in the

support of f, ;. Let now
A= [\ (Leb(f) N Leb(fux) N {f < 00} O {fu > OD] X By —

k:+1)'
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for all n,k € N.

We claim that y(U, 1A, %) = 0. Indeed for fixed n,k € N, the set \ (Leb(f) N
Leb(fnx) N {f < +00}) has £? measure 0, so that it also has p-measure 0 and then
7rﬁl'yn7k measure 0. The set Q\ {f,, » > 0} also has 7rﬁl'yn7k measure 0, so that y(A, ) =
Yn,k(An k) = 0. This proves the claim and we conclude that v is concentrated on the set
(support(y) N T')\ Uy, kA, , which has all the desired properties but the o-compactness.
This last property is achieved thanks to the inner regularity of ~. O

The above discussion and Lemma yield us to introduce the following notions:

Definition 3.4. The couple (z,y) € T' is a T'-reqular point if x is a Lebesgue point of

I'~Y(B(y,r)) for any positive 7; it is a I-density-regular point if for any r > 0 there exists
(g,7) such that (3.1) holds.

Remark 3.5. By definition any element (z,y) € D(I") (with the notations of Lemma 3.3)
is a [-density-regular point, we notice that it is also a I'-regular point. Indeed, for r > 0
there exists (§,7) such that (3.1) holds, then since f(z) > 0 and z € Leb(f) it follows
that z belongs to Leb({f > 0}). By the definition of f it comes

/. fact = 5@ x B0\ 1) =0
{f>0N\I~1(B(y,r))
so that L4{f > ON\I' "1 (B(y,r))) = 0. As a consequence, z belongs to Leb(I'"*(B(y, r))).

Lemma 3.3 above therefore states that any transport plan  is concentrated on a Borel
set consisting of regular as well as density-regular points.

4. A PROPERTY OF THE SELECTED OPTIMAL TRANSPORT PLANS

In this section, we obtain a regularity result (Proposition 4.2 below) for the transport
plans which belong to Os2(u,v) (see Definition 2.4). Following the formalism of [4] we
introduce the notion of transport set related to a subset I of R% x R¢,

Definition 4.1. Let T be a subset of R? x R?, the transport set T(T") of T is
T ={1—-t)x+ty| (z,y) €T, t€(0,1)}.
Notice that if I' is o-compact then T'(I") is also o-compact.

Proposition 4.2. Assume that p << L and let v € Oy(u,v) be concentrated on a
o-compact set I'. Then for any (z,y) € D(I') (obtained by Lemma 3.3) with x # y and
for r > 0 small enough it holds
lim f,Cd [T (F N [B($, g) X B(y,r)}) N B(x,é)]
e L4(B(z,9))
Proof. We denote by f the density of pu. Consider (z,y) € D(I') with = # y and
0 <r << |z—y| Letgyand 7 be as in Lemma 3.3; we recall that wé'yLQ x B(y,T) is

> 0. (4.1)

absolutely continuous with respect to £%, with density denoted by f, that f(a:) > 0 and

. 1 i1 f — lim 71 z)— f(x)| =
bt 7B o, )@=l s [ 15G) = sl =0
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Let G :={z € Q| %f(x) < f(2) and f(z) < f(x) 4+ 1}. Possibly subtracting a set of
L%measure 0 we may consider G a Borel set and
d B
lim LYG N B(z,s))

s—0 [,d(B(J?,S)) =L

Fix 6 > 0 so that

m <1 and Vse(0,0), LYGNB(z,s)) > %E(B(aj,s)) (4.2)
and fix t € (0, m) Then for every z € B(x, %) and every w € B(y,r) it holds
(1 —t)z+tw € B(x,9). (4.3)
For such a choice of § define the subset G5 := mﬂ G of G and notice that
LG5 N B, g)) > %Ld(B(x, g)). (4.4)

Let As := G5 x B(g,7) and consider the measure v4, := 7| As. We observe that WéyAé

is absolutely continuous with respect to £¢ and we denote by fay its density. Then one
has

@) < fa < f < f@H1 on G (15)
It then follows from (4.3), (4.4) and (4.5) that
f(x § §
10 (B2, 2)) < whya (Bl 2) < P, (B(a.). (46)

Since v belongs to Oa(p, ), it is a w*-limit of a subsequence (7., ); of minimizers of
(D, ). We notice that claim (2) of Proposition 2.2 holds for ., |Gs x €2, so that:

|1 Pf e, |Gs x Qoo < (1= )| 72, |Gs X Qlloe = (1 = )" £ 1G5l -

By Lemma 2.5 it follows that 7| G5 x € is the w*-limit of the subsequence (7., |Gs x Q).
The sequence (Pﬁt'ysk |Gs x Q) then converges weakly in L>() to Pﬁt’y |Gs x Q, and in
particular letting £ — +o00 in the above estimate yields

| Pfagllee < 1P{Y|Gs x QI < 2(f(x) +1). (47)

On the other hand we claim that whenever a measure A € M(Q x Q) is supported on a
Borel set A the measure Pﬁt)\ is supported on T'(A). Indeed

PIXQ\T(4)) = A((P) ™ (2\ T(A)) < A(© x 2\ A) = 0.

As a consequence Pﬁt'mS is supported on T'(I' N [B(, g) x B(y,r)]).
Then again the choice of ¢t and (4.7) imply that

Pluas (B, 8) = P (T80 [B(o. 3) % Bl r)) 0 80,0))

< 2(f(z) + 1)L¢ (T(r N [B(z, g) x B(y,)]) N B(a:,é)) . (4.8)



THE MONGE PROBLEM 9

The proof is now complete since (4.6) and (4.8) yield

f(z)
= 2 f(2) + 1)

for any 6 > 0 small enough for (4.2) to hold. O

,Cd(T(F N [B(x, g) x B(y,r)]) N B(x,6))

5. PROOF OF THE MAIN THEOREM

We now conclude with the proof of Theorem 1.1, which is a consequence of the fol-
lowing result.

Theorem 5.1. Assume that u << L. Then every element v of Oo(,v) is induced by
a transport map T, € T (p,v), i.e. v = (id X Ty ).

Proof. Let v € Oy(p,v), we prove that it is induced by a transport map T, € T (u,v).
By Proposition 2.1 in [1], it is sufficient to prove that v is concentrated on a Borel graph.

It follows from Proposition 2.6 that « is concentrated on a o-compact set I' satisfying
(2.4). We then apply Proposition 4.2 to get that «y is concentrated on a o-compact subset
D(T) of I' N supp(7y) and on which (4.1) is satisfied.

We claim that D(I") is contained in a graph. To prove this, we show that if (z¢, yp) and
(2o, y1) both belong to D(T") then yo = y1. We argue by contradiction, and assume that
Y1 # yo. As a consequence, one either has (y1—yo)-(yo—2z0) < 0or (yo—y1)-(y1—x0) < 0.
Without loss of generality, we assume that

(y1 = o) - (Yo — xo) < 0.
We fix r > 0 small enough so that

Vx € B(zo,7), Yy € B(yo, ), Yy € B(y1,7), y—y) - —z) <0. (5.1)

Since (zg,y1) € D(I'), we infer that x¢ is a Lebesgue point for I"*(B(y1,7)). Moreover,
we also get from (xg,y0) € D(I') and (4.1) that

g L4 (T (F N [B(a;o, g) X B(yo,r)]) N B(xo,é))
5—0+ L4(B(xg,0))

As a consequence, for d small enough there exists (z/,y’) and (z,y) in T" such that

> 0.

5 e -

z’ € B(xy, 5), v € B(yo,r), z€[2,y]NB(x,8) and y € Bly,r).
It follows from (2.4) applied to (2/,y) and (z,y) that
(y—y) (@—a) =0

but since x € [z, ] one also has z — 2/ = ;z,:%;" (y" — x) which contradicts (5.1). O

Remark 5.2. 1t seems natural to expect that the set Oa(p, ) has a unique element, using
the same type of uniqueness argument as in the Step 5 of the proof of Theorem B in [3].
However the set Oz(u, V), as defined in Definition 2.4, is not necessarily convex, and this
argument does not apply here.
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6. COMMENTS

The strategy for proving Theorem 5.1 above relies on two fundamental ingredients:
the cyclical-monotonicity for particular solutions of (1.3) obtained in Proposition 2.6,
and the density result for the set of transport rays obtained in Proposition 4.2. This
strategy was already that developed in [12] for the special case of a strictly convex norm.

The originality in the use of Proposition 2.6 is that, since the norm || -|| is not assumed
to be strictly convex, it may happen that the points z,z’,y,7’ in consideration are not
aligned. In the strictly convex case this property of alignment is fundamental since it
basically allows to reduce the problem (1.3) to a family of one-dimensional problems, on
which one can use the property of monotonicity of the selected optimal transport plan
(solution of (2.1)). In the general - not necessarily strictly convex - case, we need to use
the full information that the selected particular solution is concentrated on a set which
is cyclically monotone in the classical sense of convex analysis.

The fact that the result stated in Proposition 4.2, although quite natural, happens
somewhat difficult to obtain (and in particular was not derived in its full generality in
Proposition 5.2 of [12]), may be illustrated by the following example. Let us first recall
the following result in [3]:

Theorem 6.1 (Theorem A of [3]). There exist a Borel set M C [—1,1] with |M| = 8
and two Borel maps f; : M — [=2,2] x [=2,2] for i = 1,2 such that the following holds.
For x € M denote by l,, the segment connecting (fi(x),—2) to (f2(x),2) then

(1) {z} =1, N M for all x € M,
(2) Lz Nl =0 for all z,y € M different.

If one considers I' := {(z, F(x)) : * € M} with F(z) := (f2(z),2), then we observe
that the open transport set T(T") has density 0 at every point of 7!(I') = M (although
M has full measure in [—1,1]?). We notice that T' supports the transport plan (id x
F)3(L£3| M) which is an optimal transport plan between its marginals for the cost ||z|| :=
max{|z1], |ze|,3|x3|}. The Lemma 3.3 (and the notion of I'-density-regular points) as
well as the approximating procedure provided in [29] (and recalled in §2) then appear
as the necessary cornerstones to derive Proposition 4.2. In fact, it had been noticed in
section §7 of [12], that using some estimate for the so called “transport density” may
allow to obtain some technical result analogous to Proposition 4.2. Altough this is not
exactly what we did in the present paper, the inequality (4.6) in the proof of Proposition
4.2 contains that type of estimate.

We now discuss further possible extensions of the methodology developed here to prove
Theorem 5.1. The above example first indicates that for some very bad cases, the open
transport T(I') may have density 0 at any point of 7!(I') when the norm is not strictly
convex. This may be a limit of the definition of the open transport set that we use:
a possible alternative would be to consider the set of all geodesics joining two points
instead of considering only the segments. This would give a “fat” transport set. For the
moment, our approach cannot be extended to this kind of transport sets without some
substantial addition. We also notice that the construction we make in this paper does
not make explicit use of the geometry of the segments, but it is based on some property
of segments which may be enjoyed by more general family of curves. Then we believe



THE MONGE PROBLEM 11

that there is the possibility that the same approach could bring to the proof of existence
of optimal transports also in other geometric settings where this result is currently out
of sight.

We finally conclude by noticing that our strategy also provides a very efficient way
to recover the existence result for an optimal transport map for the classical case of the
Euclidean norm (or a C? strictly convex norm). Indeed, in that case the approximating
procedure of §2 is useless and Proposition 4.2 holds for any solution « of (1.3) because
of the following property: if w is a potential for (1.3) (i.e. a solution of the classical
dual problem for (1.3)), then there exists a countable union of sets U;7; on which pu
is concentrated and such that the gradient Vu is Lipschitz-continuous on each 7T; (for
instance see [1, 10, 32]). This, together with the fact that the transport rays do not
cross, allows to derive the desired density.

APPENDIX

For the sake of completeness, we give some details of the arguments of the proofs of
Proposition 2.2 as well as Lemma 2.3. These proofs are adapted from that of Theorem
1 and Lemmas 1 and 2 of [29].

Proof of Proposition 2.2 (2). Fix ¢ > 0 and ¢ > 0. Let {y;}icr be the finite support of
ve,. Fori € I we set ; := support(v:|2 x {y;}) and Q;(t) := P,(Q; x {y;}). Then if A
is a Borel subset of {2 we have

Pl(:[B)(A) < Y (=[B)(P)HANQ()))

el
= c (ANQ(t) —ty)
;u B< y )
< S0 = ) e gl LHA N (D)),
i€l

The conclusion then follows whenever

> LUANQ(t) = (UAmQ ) (< LYUA)).

el el

This equality indeed follows from the fact that the sets €;(¢) and Q;(¢) are disjoint when
i # j. We prove this by contradiction, and assume that (1—t)z; +ty; = (1—t)x;+ty; for
some z; € £, x; € {; with ¢ # j. Notice that since y; # y;, one also has y; —x; # y; —x;
The cost ¢ : (x,y) — ||z—y|+€|z—y|? being continuous, the support of 7. is a c-cyclically
monotone set, and thus one has

c(yi — xi) +c(y; —x5) < elyy — @) + c(yi — ;).

Since y; —x; = t(y; — @) + (1 = t)(y; — ;) and y; —x; = (1 — ) (y; — @) + Uy; — z;),
we conclude from the strict convexity of ¢ that

c(yj — xi) +c(yi —x5) < clyi — xi) + c(y; — ;)

which is a contradiction. O
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Proof of Lemma 2.3. Assume that Q@ C B(0, R). For n > 1 let p,, be a measurable map
from € to a grid of at most (2Rn)? points with the property that [p,(z) — | < L for
any x € €. Let v be a solution of (2.1), for every n > 1 we set 4" := (id X py)yy.

We now write the optimality of 7. for (D.) so that for any ¢ > 0 and n > 1 it holds

1
Cctoav) = Milmre)+ [ lo-yldnete [ o yPdye + e Card(ry)

QxQ QxQ
< C.(v";v)
1
— W)+ [ eyl v [y + S Card ()
€ QxQ QxQ
1
< ——I—/ Hx—y||d7"—|—f-:/ \x—y\2d7"+53d+2(2Rn)d.
ne QxQ OxQ

Keeping the first term in C.(v.;v), multiplying by € and letting € — 0 then yields

1
Vn > 1, limsupwl(ﬂi'ya,u) < .
n

e—0

Letting n — +o00 we get the w*-convergence of 7Tﬁ2’}/5 to v. As a consequence, any
w*-cluster point of (7). as € — 0 belongs to II(u,v).
Keeping the second term in C.(7.,v) and taking n(e) ~ e 2 yields

/ e —ylldy. < e+ / lz — ylldy™® + ¢ / & — yPdy"© 1 H22R)
QxQ QOxQ QOxQ
We let € — 0 and notice that
/ e — ylldy™® — / e — ylldy = Wi, v),
QxQ OxN

so that any w*-cluster point of (7.)c is a solution of (1.3).
We now notice that

/Q 0 ||3j - de76 > Wl(#a”?%) > Wl(,uvy) - Wl(yv W?%)
X

and

1
n

/ e — ylldy" < / e — ylldy + / 1pa(y) — ylldy™ < Wi ()
QxQ QxQ QOxQ

+
where we used the optimality of ~ for (1.3). Keeping the three first terms in C. (7, v),
we then obtain that

1 1+¢
(= = DWi(v, ﬂ'g%) +e / |z — y2dy. < +e / |z — y2dy™ + £39T2(2Rn)%.
€ QxQ ne QxQ

The first term on the right hand side is non-negative for € small enough, then dividing
by € and taking n(e) ~ ¢~ yield

/ o —yPdye < (14 )+ / @ — yPdy"© 1 e(2R)"
QxQ QxQ

so that any w*-cluster point of (7). is a solution of (2.1). O
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