
THE MONGE PROBLEM IN R
dTHIERRY CHAMPION AND LUIGI DE PASCALEAbstra
t. We 
onsider the Monge problem in a 
onvex bounded subset of R

d. The
ost is given by a general norm, and we prove the existen
e of an optimal transportmap under the 
lassi
al assumption that the �rst marginal is absolutely 
ontinuouswith respe
t to the Lebesgue measure. The approa
h we propose to solve this problemdoes not use the disintegration of measures.1. Introdu
tionThe Monge problem has origin in the Mémoire sur la théorie des déblais et remblaiswritten by G. Monge [23℄, and may be stated as follows:
inf

{
∫

Ω
|x − T (x)|dµ(x) : T ∈ T (µ, ν)

}

, (1.1)where Ω is the 
losure of a 
onvex open subset of R
d, | · | denotes the usual Eu
lideannorm of R

d, µ, ν are Borel probability measures on Ω and T (µ, ν) denotes the set oftransport maps from µ to ν, i.e. the 
lass of Borel maps T su
h that T♯µ = ν (where
T♯µ(B) := µ(T−1(B)) for ea
h Borel set B).In this paper we prove the following existen
e result for a generalization of the problem,where the Eu
lidean norm | · | is repla
ed by a general norm on R

d.Theorem 1.1. Let ‖ · ‖ be a norm on R
d and assume that µ is absolutely 
ontinuouswith respe
t to the Lebesgue measure Ld, then the problem

min

{
∫

Ω
‖x − T (x)‖dµ(x) : T ∈ T (µ, ν)

} (1.2)has at least one solution.We emphasize the fa
t that we make no regularity assumption on the norm ‖ · ‖. Onthe other hand, the assumption that the �rst marginal µ should be absolutely 
ontinuouswith respe
t to the Lebesgue measure is 
lassi
al and may be justi�ed by Theorem 8.3in Ambrosio et al. [4℄, whi
h states that for any s < d there exists a measure µ << Hsfor whi
h (1.2) does not have any solution.The main di�
ulties in (1.2) are due to the fa
ts that the obje
tive fun
tional isnon-linear in T and the set T (µ, ν) does not possess the right 
ompa
tness propertiesto apply the dire
t methods of the Cal
ulus of Variations. A suitable relaxation wasDate: 25 april 2009.2000 Mathemati
s Subje
t Classi�
ation. 49Q20, 49K30, 49J45.Key words and phrases. Monge-Kantorovi
h problem, optimal transport problem, 
y
li
al monotoni
ity.1



2 THIERRY CHAMPION AND LUIGI DE PASCALEintrodu
ed by Kantorovi
h [21, 22℄ and it proved to be a de
isive tool to deal with thisproblem. De�ne the set of transport plans from µ to ν as
Π(µ, ν) := {γ ∈ P(Ω × Ω) | π1

♯ γ = µ, π2
♯ γ = ν},where P(Ω × Ω) denotes the set of Borel probability measures on Ω× Ω and πi denotesthe standard proje
tion in the Cartesian produ
t. The set Π(µ, ν) is always non-emptyas it 
ontains at least µ ⊗ ν. Then Kantorovi
h proposed to study the problem

min

{
∫

Ω×Ω
‖x − y‖dγ(x, y) : γ ∈ Π(µ, ν)

}

. (1.3)Problem (1.3) is 
onvex and linear in γ, then the existen
e of a minimizer may beobtained by the dire
t method of the Cal
ulus of Variations. To obtain the existen
e ofa minimizer for (1.2) it is then su�
ient to prove that some solution γ ∈ Π(µ, ν) of (1.3)is in fa
t indu
ed by a transport T ∈ T (µ, ν), i.e. may be written as γ = (id × T )♯µ.Before des
ribing the present work, let us review brie�y other existen
e results for(1.2). Sudakov [31℄ �rst proposed an e�
ient strategy to solve (1.2) for a general norm ‖·‖on R
d. However this method involved a 
ru
ial step on the disintegration of an optimalmeasure γ for (1.3) whi
h was not 
ompleted 
orre
tly at that time, and has re
entlybeen justi�ed in the 
ase of a stri
tly 
onvex norm by Caravenna [11℄. Meanwhile,the problem (1.1) has been solved by Evans et al. [19℄ with the additional regularityassumption that µ and ν have Lips
hitz-
ontinuous densities with respe
t to Ld, andthen by Ambrosio [1℄ and Trudinger et al. [32℄ for µ and ν with integrable density. For

C2 uniformly 
onvex norms the problem (1.2) has been solved by Ca�arelli et al. [10℄and Ambrosio et al. [4℄, and �nally for 
rystalline norms in R
d and general norms in

R
2 by Ambrosio et al. [3℄. The original proof of Sudakov was based on the redu
tionof the transport problems to a�ne regions of smaller dimension, and all the proof welisted above are based on the redu
tion of the problem to a 1-dimensional problem via a
hange of variable or area-formula. In [12℄, we designed a di�erent method whi
h doesnot require the redu
tion to 1-dimensional settings. However, we were able to 
arry onone of the steps of our proof only in the 
ase of stri
tly 
onvex norms.In this paper, we prove the existen
e of a solution to (1.2) for a general norm ‖ · ‖ on

R
d. The originality of our method for the proof of Theorem 1.1 above is that it doesnot require disintegration of measures and relies on a simple but powerful regularityresult (see Lemma 3.3 below), whi
h is inspired by a previous regularity result obtainedin the study of an optimal transportation problem with 
ost fun
tional in non-integralform in [13℄. In se
tion �2, we introdu
e a variational approximation to sele
t solutions of(1.3) that have a parti
ular monotoni
ity property. Se
tion �3 is devoted to the notion ofdensity-regular points of a transport γ and in parti
ular to Lemma 3.3, whi
h states thata transport map γ ∈ Π(µ, ν) is 
on
entrated on su
h points. In the following se
tion �4,we infer from the pre
eding some te
hni
al regularity result for the parti
ular solutionsof (1.3) previously sele
ted. The proof of our main result Theorem 1.1 is �nally derivedin �5, while some �nal 
omments are 
olle
ted in �6.



THE MONGE PROBLEM 32. Variational approximation to sele
t monotone transport plansFollowing the line of [3, 10, 29℄, we introdu
e a variational approximation to sele
toptimal transport plans for (1.3) whi
h have some additional properties, and in the nextse
tions we shall prove that these parti
ular optimal transport plans are indu
ed bytransport maps. This pro
edure of 
hoosing parti
ular minimizers is the root of the ideaof asymptoti
 development by Γ-
onvergen
e (see [5℄ and [6℄) .We denote by O1(µ, ν) the set of optimal transport plans for (1.3), and 
onsider theauxiliary problem:
min

{
∫

Ω×Ω
|y − x|2dγ(x, y) : γ ∈ O1(µ, ν)

}

, (2.1)where we remark the fa
t that the 
ost in 
onsideration involves the eu
lidean norm | · | of
R

d. Following �3.1 in [29℄, we introdu
e an approximating pro
edure for some parti
ularsolutions of (2.1) (see Lemma 2.3 below). Given two Borel probability measures α and
β on Ω, we denote by

W1(α, β) := min

{
∫

Ω×Ω
‖x − y‖dγ : γ ∈ Π(α, β)

}the usual 1−Wasserstein distan
e asso
iated to the norm ‖ ·‖. Noti
e that problem (1.3)then 
orresponds to W1(µ, ν). For ε > 0, we also set
Cε(γ; ν) :=

1

ε
W1(π

2
♯ γ, ν) +

∫

Ω×Ω
‖x − y‖dγ + ε

∫

Ω×Ω
|x − y|2dγ + ε3d+2Card(π2

♯ γ)for any γ ∈ P(Ω × Ω), where Card(·) denotes the 
ardinality of the support of themeasure. We emphasize the fa
t that the norm ‖ · ‖ appears in the two �rst terms of
Cε while the Eu
lidean norm | · | appears only in the third term. We then 
onsider thefollowing family of minimization problems (Dε)ε>0 asso
iated to (1.3) and (2.1):

(Dε) min{Cε(γ; ν) : γ ∈ P(Ω × Ω), π1
♯ γ = µ}.For any ε > 0 the problem (Dε) admits at least one solution γε, with dis
rete se
ondmarginal π2

♯ γε.We �nally introdu
e the standard family of interpolated proje
tions.De�nition 2.1. For t ∈ [0, 1] we will denote by P t the map
P t : Ω × Ω → Ω

(x, y) 7→ (1 − t)x + ty.The following Proposition 
olle
ts some properties of the minimizers of (Dε) for lateruse, mainly inspired from [29℄.Proposition 2.2. Let B be a Borel subset of Ω × Ω. Let ε > 0 and γε be a solution for
(Dε), and set µε,B := π1

♯ γε⌊B and νε,B := π2
♯ γε⌊B. Then it holds(1) the measure γε⌊B is a solution of the problem

(Dε,B) min

{
∫

Ω×Ω
(‖x − y‖ + ε|x − y|2)dγ : γ ∈ Π(µε,B, νε,B)

}



4 THIERRY CHAMPION AND LUIGI DE PASCALEwhere Π(µε,B, νε,B) denotes the set of non-negative Borel measures with marginals
µε,B and νε,B;(2) if µε,B ∈ L∞(Ω) then for any t ∈ (0, 1) it holds

‖P t
♯(γε⌊B)‖L∞ ≤ (1 − t)−d‖µε,B‖L∞ .Proof. Sin
e γε is a solution of (Dε), it is a solution of

min

{
∫

Ω×Ω
(‖x − y‖ + ε|x − y|2)dγ : γ ∈ Π(µ, π2

♯ γε)

}

. (2.2)The 
laim (1) then follows from the linearity of the fun
tional in problem (2.2) (e.g. seeproof of Lemma 4.2 in [3℄).The 
laim (2) is a dire
t appli
ation of Lemma 2 in �3.2 of [29℄, sin
e by (1) themeasure γε⌊B is an optimal transport plan between µε,B, whi
h is absolutely 
ontinuouswith respe
t to Ld, and the dis
rete measure νε,B for the stri
tly 
onvex 
ost (x, y) 7→
‖x − y‖ + ε|x − y|2 (see also the Appendix below). �The link between the family of problems (Dε) and (2.1) is given in the followingLemma, whose proof 
oin
ides with that of Lemma 1 in �3.1 of [29℄ and will be given inthe appendix for sake of 
ompleteness.Lemma 2.3. For any ε > 0 let γε be a solution of (Dε), then the sequen
e (π2

♯ γε) w∗-
onverges to ν as ε → 0. Moreover, any w∗-limit as εk → 0 of a subsequen
e of solutions
(γεk

)k∈N is a solution of (2.1).The above Lemma suggests to introdu
e the following set of optimal transport plansfor (1.3).De�nition 2.4. We shall denote by O2(µ, ν) the minimizers for (2.1) whi
h are w∗-limitsas εk → 0 of a subsequen
e (γεk
)k∈N of minimizers of (Dεk

).We observe that, by de�nition, the minimizers γε of problem (Dε) are all probabilitymeasures on Ω × Ω, and sin
e their marginals 
onverge as ε → 0 to µ and ν, we inferthat O2(µ, ν) is not empty.It is an important fa
t in the following that the lo
al properties stated in Proposition2.2 pass to the limit and are still valid for the elements of O2(µ, ν). Noti
e that, ingeneral, the restri
tions of a sequen
e of weakly 
onverging measures does not 
onvergewithout additional assumptions. The following lemma states that this is the 
ase when
onsidering a sequen
e of transport plans with the same �rst marginals.Lemma 2.5. Let (γε)ε a sequen
e in P(Ω × Ω) with w∗−limit γ ∈ P(Ω × Ω) as ε → 0,and su
h that π1
♯ γε = π1

♯ γ = µ for any ε > 0, with µ << Ld. Then for any Borel set
G ⊂ Ω it holds γε⌊G × Ω

∗
⇀ γ⌊G × Ω.Proof. We have to prove that ∀ ϕ ∈ Cb(Ω × Ω)

∫

Ω×Ω
χG(x)ϕ(x, y)dγε(x, y) →

∫

Ω×Ω
χG(x)ϕ(x, y)dγ(x, y) as ε → 0. (2.3)



THE MONGE PROBLEM 5Sin
e µ << Ld, it follows from Lusin's Theorem that for all α > 0 there exists a 
losedset Fα su
h that
χG|Fα

is 
ontinuous and µ(Ω \ Fα) ≤ α.As a 
onsequen
e for every α > 0 one hasthe restri
tion of (x, y) 7→ χG(x)ϕ(x, y) to Fα × Ω is 
ontinuousand
lim sup

ε→0
γε((Ω \ Fα) × Ω) ≤ µ(Ω \ Fα) ≤ α.Then sin
e (x, y) 7→ χG(x)ϕ(x, y) is bounded and then equiintegrable with respe
t to

(γε)ε>0, (2.3) follows from Proposition 5.1.10 of [2℄. �Finally, sin
e an element ofO2(µ, ν) is a solution of (2.1), it enjoys a 
y
li
al-monotoni
ityproperty inherited from the 
ost (x, y) 7→ |y − x|2 (see remark 2.7 below), stated in thefollowing Proposition, whose proof may be derived from that of Lemma 4.1 in [3℄ and isgiven in [12℄ (see Proposition 3.2 therein).Proposition 2.6. Let γ be a solution of (2.1), then γ is 
on
entrated on a σ-
ompa
tset Γ with the following property:
∀(x, y), (x′, y′) ∈ Γ, x ∈ [x′, y′] ⇒ (x − x′) · (y − y′) ≥ 0, (2.4)where · denotes the usual s
alar produ
t on R

d.Remark 2.7. A solution γ of the 
lassi
al transport problem asso
iated to | · |2:
min

{
∫

Ω×Ω
|y − x|2dλ(x, y) : λ ∈ Π(µ, ν)

}

,is known to be 
on
entrated on a | · |2-
y
li
ally monotone set Γ, that is:
∀(x, y), (x′, y′) ∈ Γ, (x − x′) · (y − y′) ≥ 0.In (2.4), the restri
tion that x should be in [x′, y′] to get the inequality has origin in thefa
t that the 
onstraint in (2.1) is O1(µ, ν) in pla
e of Π(µ, ν).Remark 2.8. The reason to deal with σ-
ompa
t sets Γ, in the above proposition as wellas in the following, is that the proje
tion π1(Γ) is also σ-
ompa
t, and in parti
ular is aBorel set. 3. A property of transport plansWe begin by 
onsidering some general properties of transport plans. This se
tion isindependent of the transport problem (1.3), and some of the te
hniques detailed beloware re�nements of similar ones whi
h were �rst applied in [13℄ in the framework of non-
lassi
al transportation problems involving 
ost fun
tionals not in integral form.De�nition 3.1. Let γ ∈ Π(µ, ν) be a transport plan and Γ a σ-
ompa
t set on whi
h itis 
on
entrated. For y ∈ Ω and r > 0 we de�ne

Γ−1(B(y, r)) := π1(Γ ∩ (Ω × B(y, r))).



6 THIERRY CHAMPION AND LUIGI DE PASCALEIn other words, when given a σ-
ompa
t set Γ on whi
h γ is 
on
entrated, the set
Γ−1(B(y, r)) is the set of those points whose mass (with respe
t to µ) is partially or
ompletely transported to B(y, r) by the restri
tion of γ to Γ. We may justify this slightabuse of notations by the fa
t that γ should be thought of as a devi
e that transportsmass. Noti
e also that Γ−1(B(y, r)) is a σ-
ompa
t set.Sin
e this notion is important in the sequel, we re
all that when a fun
tion f is lo
allyintegrable for the Lebesgue measure Ld, one has

lim
r→0

1

Ld(B(x, r))

∫

B(x,r)
|f(z) − f(x)|dz = 0for almost every x in Ω. These points x are usually 
alled Lebesgue points of f . When

A is an Ld-measurable subset of Ω, we shall 
all Lebesgue point of A any element x ∈ Awhi
h is a Lebesgue point of the 
hara
teristi
 fun
tion f = χA of A, and then satis�es
lim
r→0

Ld(A ∩ B(x, r))

Ld(B(x, r))
= 1.In the following, we shall denote by Leb(f) (resp. Leb(A)) the set of points x ∈ Ω (resp.

x ∈ A) whi
h are Lebesgue points of f (resp. A). Moreover we will denote by support(f)the set of points x ∈ Ω su
h that ∫
B(x,r) f(z)dz > 0 for any r > 0.De�nition 3.2. We will 
all density of an absolutely 
ontinuous measure λ the fun
tion

g(x) = lim sup
r→0

λ(B(x, r))

Ld(B(x, r))
.Then the Lebesgue points of the density of λ are uniquely determined as well as thevalue of g at those points.The following Lemma is an essential step in the proof of Proposition 4.2 and Theorem5.1 below. This result is a re�nement of Lemma 5.2 from [13℄ and Lemma 4.3 in [12℄,and its proof follows the line of those Lemmas. It in fa
t en
ompasses those results, asRemark 3.5 below shows.Lemma 3.3. Assume that µ << Ld with density denoted by f . Let γ ∈ Π(µ, ν), and

Γ a set on whi
h γ is 
on
entrated. Then there exists a σ-
ompa
t subset D(Γ) of
Γ ∩ support(γ) on whi
h γ is 
on
entrated, and su
h that for any (x, y) ∈ D(Γ) and
r > 0, there exist ỹ ∈ Ω and r̃ > 0 su
h that

y ∈ B(ỹ, r̃) ⊂ B(y, r), x ∈ Leb(f) ∩ Leb(f̃), f(x) < +∞ and f̃(x) > 0 (3.1)where f̃ is the density of π1
♯ γ⌊Ω × B(ỹ, r̃) with respe
t to Ld.Proof. Let (yn)n be a dense sequen
e in Ω. For ea
h (n, k) ∈ N

2 we set γn,k := γ⌊Ω ×
B(yn, 1

k+1) and de�ne fn,k to be the density of π1
♯ γn,k with respe
t to Ld. We noti
e thatfor any (x, y) ∈ Ω×Ω and r > 0 there exists n, k ∈ N su
h that y ∈ B(yn, 1

k+1) ⊂ B(y, r),and that if (x, y) is in the support of γ then it is in the support of γn,k and x is in thesupport of fn,k. Let now
An,k := [Ω \ (Leb(f) ∩ Leb(fn,k) ∩ {f < +∞} ∩ {fn,k > 0})] × B(yn,

1

k + 1
).



THE MONGE PROBLEM 7for all n, k ∈ N.We 
laim that γ(∪n,kAn,k) = 0. Indeed for �xed n, k ∈ N, the set Ω \ (Leb(f) ∩
Leb(fn,k) ∩ {f < +∞}) has Ld measure 0, so that it also has µ-measure 0 and then
π1

♯ γn,k measure 0. The set Ω \ {fn,k > 0} also has π1
♯ γn,k measure 0, so that γ(An,k) =

γn,k(An,k) = 0. This proves the 
laim and we 
on
lude that γ is 
on
entrated on the set
(support(γ) ∩ Γ)\∪n,kAn,k, whi
h has all the desired properties but the σ-
ompa
tness.This last property is a
hieved thanks to the inner regularity of γ. �The above dis
ussion and Lemma yield us to introdu
e the following notions:De�nition 3.4. The 
ouple (x, y) ∈ Γ is a Γ-regular point if x is a Lebesgue point of
Γ−1(B(y, r)) for any positive r; it is a Γ-density-regular point if for any r > 0 there exists
(ỹ, r̃) su
h that (3.1) holds.Remark 3.5. By de�nition any element (x, y) ∈ D(Γ) (with the notations of Lemma 3.3)is a Γ-density-regular point, we noti
e that it is also a Γ-regular point. Indeed, for r > 0there exists (ỹ, r̃) su
h that (3.1) holds, then sin
e f̃(x) > 0 and x ∈ Leb(f̃) it followsthat x belongs to Leb({f̃ > 0}). By the de�nition of f̃ it 
omes

∫

{f̃>0}\Γ−1(B(y,r))
f̃dLd = γ(Ω × B(ỹ, r̃) \ Γ) = 0so that Ld({f̃ > 0}\Γ−1(B(y, r))) = 0. As a 
onsequen
e, x belongs to Leb(Γ−1(B(y, r))).Lemma 3.3 above therefore states that any transport plan γ is 
on
entrated on a Borelset 
onsisting of regular as well as density-regular points.4. A property of the sele
ted optimal transport plansIn this se
tion, we obtain a regularity result (Proposition 4.2 below) for the transportplans whi
h belong to O2(µ, ν) (see De�nition 2.4). Following the formalism of [4℄ weintrodu
e the notion of transport set related to a subset Γ of R

d × R
d.De�nition 4.1. Let Γ be a subset of R

d × R
d, the transport set T (Γ) of Γ is

T (Γ) := {(1 − t)x + ty | (x, y) ∈ Γ, t ∈ (0, 1)}.Noti
e that if Γ is σ-
ompa
t then T (Γ) is also σ-
ompa
t.Proposition 4.2. Assume that µ << Ld and let γ ∈ O2(µ, ν) be 
on
entrated on a
σ-
ompa
t set Γ. Then for any (x, y) ∈ D(Γ) (obtained by Lemma 3.3) with x 6= y andfor r > 0 small enough it holds

lim inf
δ→0+

Ld
[

T
(

Γ ∩
[

B(x, δ
2) × B(y, r)

])

∩ B(x, δ)
]

Ld(B(x, δ))
> 0. (4.1)Proof. We denote by f the density of µ. Consider (x, y) ∈ D(Γ) with x 6= y and

0 < r << |x − y|. Let ỹ and r̃ be as in Lemma 3.3; we re
all that π1
♯ γ⌊Ω × B(ỹ, r̃) isabsolutely 
ontinuous with respe
t to Ld, with density denoted by f̃ , that f̃(x) > 0 and

lim
s→0

1

Ld(B(x, s))

∫

B(x,s)
|f̃(z) − f̃(x)| = lim

s→0

1

Ld(B(x, s))

∫

B(x,s)
|f(z) − f(x)| = 0.



8 THIERRY CHAMPION AND LUIGI DE PASCALELet G := {z ∈ Ω | 1
2 f̃(x) ≤ f̃(z) and f(z) ≤ f(x) + 1}. Possibly subtra
ting a set of

Ld-measure 0 we may 
onsider G a Borel set and
lim
s→0

Ld(G ∩ B(x, s))

Ld(B(x, s))
= 1.Fix δ > 0 so that

δ

|x − y| + r
< 1 and ∀s ∈ (0, δ), Ld(G ∩ B(x, s)) ≥

1

2
L(B(x, s)) (4.2)and �x t ∈ (0, δ

2(|x−y|+r)). Then for every z ∈ B(x, δ
2) and every w ∈ B(y, r) it holds

(1 − t)z + tw ∈ B(x, δ). (4.3)For su
h a 
hoi
e of δ de�ne the subset Gδ := B(x, δ
2 ) ∩ G of G and noti
e that

Ld(Gδ ∩ B(x,
δ

2
)) ≥

1

2
Ld(B(x,

δ

2
)). (4.4)Let Aδ := Gδ × B(ỹ, r̃) and 
onsider the measure γAδ

:= γ⌊Aδ. We observe that π1
♯ γAδis absolutely 
ontinuous with respe
t to Ld and we denote by fAδ

its density. Then onehas
1

2
f̃(x) ≤ fAδ

≤ f ≤ f(x) + 1 on Gδ . (4.5)It then follows from (4.3), (4.4) and (4.5) that
f̃(x)

4
Ld(B(x,

δ

2
)) ≤ π1

♯ γAδ
(B(x,

δ

2
)) ≤ P t

♯ γAδ
(B(x, δ)). (4.6)Sin
e γ belongs to O2(µ, ν), it is a w∗-limit of a subsequen
e (γεk

)k of minimizers of
(Dεk

). We noti
e that 
laim (2) of Proposition 2.2 holds for γεk
⌊Gδ × Ω, so that:

‖P t
♯ γεk

⌊Gδ × Ω‖L∞ ≤ (1 − t)−d‖π1
♯ γεk

⌊Gδ × Ω‖∞ = (1 − t)−d‖f⌊Gδ‖∞.By Lemma 2.5 it follows that γ⌊Gδ ×Ω is the w∗-limit of the subsequen
e (γεk
⌊Gδ ×Ω)k.The sequen
e (P t

♯ γεk
⌊Gδ × Ω)k then 
onverges weakly in L∞(Ω) to P t

♯ γ⌊Gδ × Ω, and inparti
ular letting k → +∞ in the above estimate yields
‖P t

♯ γAδ
‖L∞ ≤ ‖P t

♯ γ⌊Gδ × Ω‖L∞ ≤ 2d(f(x) + 1). (4.7)On the other hand we 
laim that whenever a measure λ ∈ M(Ω × Ω) is supported on aBorel set Λ the measure P t
♯ λ is supported on T (Λ). Indeed

P t
♯ λ(Ω \ T (Λ)) = λ((P t)−1(Ω \ T (Λ))) ≤ λ(Ω × Ω \ Λ) = 0.As a 
onsequen
e P t

♯ γAδ
is supported on T (Γ ∩

[

B(x, δ
2) × B(y, r)

]

).Then again the 
hoi
e of t and (4.7) imply that
P t

♯ γAδ
(B(x, δ)) = P t

♯ γAδ

(

T (Γ ∩ [B(x,
δ

2
) × B(y, r)]) ∩ B(x, δ)

)

≤ 2d(f(x) + 1)Ld

(

T (Γ ∩ [B(x,
δ

2
) × B(y, r)]) ∩ B(x, δ)

)

. (4.8)
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omplete sin
e (4.6) and (4.8) yield
Ld(T (Γ ∩ [B(x,

δ

2
) × B(y, r)]) ∩ B(x, δ)) ≥

f̃(x)

2d+2(f(x) + 1)
Ld(B(x,

δ

2
))for any δ > 0 small enough for (4.2) to hold. �5. Proof of the main theoremWe now 
on
lude with the proof of Theorem 1.1, whi
h is a 
onsequen
e of the fol-lowing result.Theorem 5.1. Assume that µ << Ld. Then every element γ of O2(µ, ν) is indu
ed bya transport map Tγ ∈ T (µ, ν), i.e. γ = (id × Tγ)♯µ.Proof. Let γ ∈ O2(µ, ν), we prove that it is indu
ed by a transport map Tγ ∈ T (µ, ν).By Proposition 2.1 in [1℄, it is su�
ient to prove that γ is 
on
entrated on a Borel graph.It follows from Proposition 2.6 that γ is 
on
entrated on a σ-
ompa
t set Γ satisfying(2.4). We then apply Proposition 4.2 to get that γ is 
on
entrated on a σ-
ompa
t subset

D(Γ) of Γ ∩ supp(γ) and on whi
h (4.1) is satis�ed.We 
laim that D(Γ) is 
ontained in a graph. To prove this, we show that if (x0, y0) and
(x0, y1) both belong to D(Γ) then y0 = y1. We argue by 
ontradi
tion, and assume that
y1 6= y0. As a 
onsequen
e, one either has (y1−y0)·(y0−x0) < 0 or (y0−y1)·(y1−x0) < 0.Without loss of generality, we assume that

(y1 − y0) · (y0 − x0) < 0.We �x r > 0 small enough so that
∀x ∈ B(x0, r), ∀y′ ∈ B(y0, r), ∀y ∈ B(y1, r), (y − y′) · (y′ − x) < 0. (5.1)Sin
e (x0, y1) ∈ D(Γ), we infer that x0 is a Lebesgue point for Γ−1(B(y1, r)). Moreover,we also get from (x0, y0) ∈ D(Γ) and (4.1) that

lim inf
δ→0+

Ld
(

T
(

Γ ∩
[

B(x0,
δ
2) × B(y0, r)

])

∩ B(x0, δ)
)

Ld(B(x0, δ))
> 0.As a 
onsequen
e, for δ small enough there exists (x′, y′) and (x, y) in Γ su
h that

x′ ∈ B(x0,
δ

2
), y′ ∈ B(y0, r), x ∈ [x′, y′] ∩ B(x0, δ) and y ∈ B(y1, r).It follows from (2.4) applied to (x′, y′) and (x, y) that

(y − y′) · (x − x′) ≥ 0but sin
e x ∈ [x′, y′] one also has x − x′ = |x−x′|
|y′−x| (y

′ − x) whi
h 
ontradi
ts (5.1). �Remark 5.2. It seems natural to expe
t that the set O2(µ, ν) has a unique element, usingthe same type of uniqueness argument as in the Step 5 of the proof of Theorem B in [3℄.However the set O2(µ, ν), as de�ned in De�nition 2.4, is not ne
essarily 
onvex, and thisargument does not apply here.



10 THIERRY CHAMPION AND LUIGI DE PASCALE6. CommentsThe strategy for proving Theorem 5.1 above relies on two fundamental ingredients:the 
y
li
al-monotoni
ity for parti
ular solutions of (1.3) obtained in Proposition 2.6,and the density result for the set of transport rays obtained in Proposition 4.2. Thisstrategy was already that developed in [12℄ for the spe
ial 
ase of a stri
tly 
onvex norm.The originality in the use of Proposition 2.6 is that, sin
e the norm ‖·‖ is not assumedto be stri
tly 
onvex, it may happen that the points x, x′, y, y′ in 
onsideration are notaligned. In the stri
tly 
onvex 
ase this property of alignment is fundamental sin
e itbasi
ally allows to redu
e the problem (1.3) to a family of one-dimensional problems, onwhi
h one 
an use the property of monotoni
ity of the sele
ted optimal transport plan(solution of (2.1)). In the general - not ne
essarily stri
tly 
onvex - 
ase, we need to usethe full information that the sele
ted parti
ular solution is 
on
entrated on a set whi
his 
y
li
ally monotone in the 
lassi
al sense of 
onvex analysis.The fa
t that the result stated in Proposition 4.2, although quite natural, happenssomewhat di�
ult to obtain (and in parti
ular was not derived in its full generality inProposition 5.2 of [12℄), may be illustrated by the following example. Let us �rst re
allthe following result in [3℄:Theorem 6.1 (Theorem A of [3℄). There exist a Borel set M ⊂ [−1, 1]3 with |M | = 8and two Borel maps fi : M → [−2, 2] × [−2, 2] for i = 1, 2 su
h that the following holds.For x ∈ M denote by lx the segment 
onne
ting (f1(x),−2) to (f2(x), 2) then(1) {x} = lx ∩ M for all x ∈ M ,(2) lx ∩ ly = ∅ for all x, y ∈ M di�erent.If one 
onsiders Γ := {(x, F (x)) : x ∈ M} with F (x) := (f2(x), 2), then we observethat the open transport set T (Γ) has density 0 at every point of π1(Γ) = M (although
M has full measure in [−1, 1]3). We noti
e that Γ supports the transport plan (id ×
F )♯(L

3⌊M) whi
h is an optimal transport plan between its marginals for the 
ost ‖x‖ :=
max{|x1|, |x2|, 3|x3|}. The Lemma 3.3 (and the notion of Γ-density-regular points) aswell as the approximating pro
edure provided in [29℄ (and re
alled in �2) then appearas the ne
essary 
ornerstones to derive Proposition 4.2. In fa
t, it had been noti
ed inse
tion �7 of [12℄, that using some estimate for the so 
alled �transport density� mayallow to obtain some te
hni
al result analogous to Proposition 4.2. Altough this is notexa
tly what we did in the present paper, the inequality (4.6) in the proof of Proposition4.2 
ontains that type of estimate.We now dis
uss further possible extensions of the methodology developed here to proveTheorem 5.1. The above example �rst indi
ates that for some very bad 
ases, the opentransport T (Γ) may have density 0 at any point of π1(Γ) when the norm is not stri
tly
onvex. This may be a limit of the de�nition of the open transport set that we use:a possible alternative would be to 
onsider the set of all geodesi
s joining two pointsinstead of 
onsidering only the segments. This would give a �fat� transport set. For themoment, our approa
h 
annot be extended to this kind of transport sets without somesubstantial addition. We also noti
e that the 
onstru
tion we make in this paper doesnot make expli
it use of the geometry of the segments, but it is based on some propertyof segments whi
h may be enjoyed by more general family of 
urves. Then we believe



THE MONGE PROBLEM 11that there is the possibility that the same approa
h 
ould bring to the proof of existen
eof optimal transports also in other geometri
 settings where this result is 
urrently outof sight.We �nally 
on
lude by noti
ing that our strategy also provides a very e�
ient wayto re
over the existen
e result for an optimal transport map for the 
lassi
al 
ase of theEu
lidean norm (or a C2 stri
tly 
onvex norm). Indeed, in that 
ase the approximatingpro
edure of �2 is useless and Proposition 4.2 holds for any solution γ of (1.3) be
auseof the following property: if u is a potential for (1.3) (i.e. a solution of the 
lassi
aldual problem for (1.3)), then there exists a 
ountable union of sets ∪iTi on whi
h µis 
on
entrated and su
h that the gradient ∇u is Lips
hitz-
ontinuous on ea
h Ti (forinstan
e see [1, 10, 32℄). This, together with the fa
t that the transport rays do not
ross, allows to derive the desired density.AppendixFor the sake of 
ompleteness, we give some details of the arguments of the proofs ofProposition 2.2 as well as Lemma 2.3. These proofs are adapted from that of Theorem1 and Lemmas 1 and 2 of [29℄.Proof of Proposition 2.2 (2). Fix ε > 0 and t > 0. Let {yi}i∈I be the �nite support of
νε,B. For i ∈ I we set Ωi := support(γε⌊Ω×{yi}) and Ωi(t) := Pt(Ωi ×{yi}). Then if Ais a Borel subset of Ω we have

P t
♯ (γε⌊B)(A) ≤

∑

i∈I

(γε⌊B)((P t)−1(A ∩ Ωi(t)))

=
∑

i∈I

µε,B

(

1

1 − t
(A ∩ Ωi(t) − t yi)

)

≤
∑

i∈I

(1 − t)−d‖µε,B‖L∞Ld(A ∩ Ωi(t)).The 
on
lusion then follows whenever
∑

i∈I

Ld(A ∩ Ωi(t)) = Ld

(

⋃

i∈I

A ∩ Ωi(t)

)

(≤ Ld(A)).This equality indeed follows from the fa
t that the sets Ωi(t) and Ωj(t) are disjoint when
i 6= j. We prove this by 
ontradi
tion, and assume that (1−t)xi +tyi = (1−t)xj +tyj forsome xi ∈ Ωi, xj ∈ Ωj with i 6= j. Noti
e that sin
e yi 6= yj, one also has yi−xi 6= yj−xj.The 
ost c : (x, y) 7→ ‖x−y‖+ε|x−y|2 being 
ontinuous, the support of γε is a c-
y
li
allymonotone set, and thus one has

c(yi − xi) + c(yj − xj) ≤ c(yj − xi) + c(yi − xj).Sin
e yj − xi = t(yi − xi) + (1 − t)(yj − xj) and yi − xj = (1 − t)(yi − xi) + t(yj − xj),we 
on
lude from the stri
t 
onvexity of c that
c(yj − xi) + c(yi − xj) < c(yi − xi) + c(yj − xj)whi
h is a 
ontradi
tion. �



12 THIERRY CHAMPION AND LUIGI DE PASCALEProof of Lemma 2.3. Assume that Ω ⊂ B(0, R). For n ≥ 1 let pn be a measurable mapfrom Ω to a grid of at most (2Rn)d points with the property that |pn(x) − x| ≤ 1
n
forany x ∈ Ω. Let γ be a solution of (2.1), for every n ≥ 1 we set γn := (id × pn)♯γ.We now write the optimality of γε for (Dε) so that for any ε > 0 and n ≥ 1 it holds

Cε(γε; ν) =
1

ε
W1(π

2
♯ γε, ν) +

∫

Ω×Ω
‖x − y‖dγε + ε

∫

Ω×Ω
|x − y|2dγε + ε3d+2Card(π2

♯ γε)

≤ Cε(γ
n; ν)

=
1

ε
W1(pn♯ν, ν) +

∫

Ω×Ω
‖x − y‖dγn + ε

∫

Ω×Ω
|x − y|2dγn + ε3d+2Card(pn♯ν)

≤
1

n ε
+

∫

Ω×Ω
‖x − y‖dγn + ε

∫

Ω×Ω
|x − y|2dγn + ε3d+2(2Rn)d.Keeping the �rst term in Cε(γε; ν), multiplying by ε and letting ε → 0 then yields

∀n ≥ 1, lim sup
ε→0

W1(π
2
♯ γε, ν) ≤

1

n
.Letting n → +∞ we get the w∗-
onvergen
e of π2

♯ γε to ν. As a 
onsequen
e, any
w∗-
luster point of (γε)ε as ε → 0 belongs to Π(µ, ν).Keeping the se
ond term in Cε(γε, ν) and taking n(ε) ≈ ε−2 yields
∫

Ω×Ω
‖x − y‖dγε ≤ ε +

∫

Ω×Ω
‖x − y‖dγn(ε) + ε

∫

Ω×Ω
|x − y|2dγn(ε) + εd+2(2R)d.We let ε → 0 and noti
e that

∫

Ω×Ω
‖x − y‖dγn(ε) →

∫

Ω×Ω
‖x − y‖dγ = W1(µ, ν),so that any w∗-
luster point of (γε)ε is a solution of (1.3).We now noti
e that

∫

Ω×Ω
‖x − y‖dγε ≥ W1(µ, π2

♯ γε) ≥ W1(µ, ν) −W1(ν, π2
♯ γε)and

∫

Ω×Ω
‖x − y‖dγn ≤

∫

Ω×Ω
‖x − y‖dγ +

∫

Ω×Ω
‖pn(y) − y‖dγn ≤ W1(µ, ν) +

1

nwhere we used the optimality of γ for (1.3). Keeping the three �rst terms in Cε(γε, ν),we then obtain that
(
1

ε
− 1)W1(ν, π2

♯ γε) + ε

∫

Ω×Ω
|x − y|2dγε ≤

1 + ε

n ε
+ ε

∫

Ω×Ω
|x − y|2dγn + ε3d+2(2Rn)d.The �rst term on the right hand side is non-negative for ε small enough, then dividingby ε and taking n(ε) ≈ ε−3 yield

∫

Ω×Ω
|x − y|2dγε ≤ (1 + ε)ε +

∫

Ω×Ω
|x − y|2dγn(ε) + ε(2R)d.so that any w∗-
luster point of (γε)ε is a solution of (2.1). �
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