Introduction to the study of generic dynamics and its relation with more classical PDE results

Romain JOLY Université de Grenoble

Joint works with Pavol Brunoský and Geneviève Raugel

Benasque, september 2009

- Short introduction to generic dynamics Motivation and definitions. Overview of ODE's results.
- Generic dynamics of PDEs Which kind of properties are used? Some open problems

Generic dynamics of ODEs

$$\left\{ egin{array}{l} \dot{X}(t) = G(X(t)) \ X(0) \in \mathbb{R}^d \end{array}
ight.$$

Suitable conditions on $G \Rightarrow$ the flow of the ODEs generates a dynamical system S(t) on \mathbb{R}^d :

- existence of global solutions
- existence of a compact global attractor (i.e. an invariant set which attracts the bounded sets of \mathbb{R}^d).

Let $k \ge 1$. We endow $C^k(\mathbb{R}^d, \mathbb{R}^d)$ with Whitney topology (or classical C^k topology). **For a generic** $G \in C^k(\mathbb{R}^d, \mathbb{R}^d)$ (i.e. belonging to a countable intersections of dense open subsets) :

- How simple/complicated are the dynamics? Gradient dynamics or nice Morse decomposition versus chaotic dynamics
- Are the dynamics stable with respect to perturbations of the system? Local stability, global stability.

Hyperbolicity of equilibrium points

Let *E* be an equilibrium point that is G(E) = 0. *E* is **hyperbolic** if DG(E) has no spectrum on the vertical line $\{z \in \mathbb{C}, Re(z) = 0\}$.

 \Rightarrow existence of stable and unstable manifolds

$$W^{s}(E) = \{X_0 \in \mathbb{R}^d, \lim_{t \to +\infty} S(t)X_0 = E\}$$

$$egin{aligned} &\mathcal{W}^u(E)=&\{X_0\in\mathbb{R}^d,\ \exists ext{ a backward solution }X(t)\ & ext{with }X(0)=X_0 ext{ and }\lim_{t o -\infty}X(t)=E\} \end{aligned}$$

and local stability of the dynamics.

Let P(t) be a periodic orbit of minimal period T. We introduce the linearized map

$$U_0 \longmapsto \Pi(T)U_0 = U(T)$$

where U(t) solves

$$\dot{U}(t) = DG(P(t))U(t), \ \ U(0) = U_0 \; .$$

P(t) is **hyperbolic** if $\Pi(T)$ has no spectrum on the unit circle $\{z \in \mathbb{C}, |z| = 1\}$ except the eigenvalue 1 which is simple.

NB : $\dot{P}(0)$ is always an eigenvector for the eigenvalue 1.

Definition

S(t) satisfies Kupka-Smale property if :

- all the equilibrium points or periodic orbits are hyperbolic,
- their stable and unstable manifolds intersect transversally.

Kupka-Smale property implies the **local stability of the dynamics** with respect to perturbations of the system.

Definition

S(t) satisfies Morse-Smale property if :

- it satisfies Kupka-Smale property,
- there is only a finite number of equilibrium points and periodic orbits,
- there is no other non-wandering points.

A point $X \in \mathbb{R}^d$ is wandering if for any neighborhood $\mathcal{N} \ni X$, $S(t)\mathcal{N} \cap \mathcal{N} = \emptyset$ for t large enough.

Morse-Smale property implies the **global stability of the dynamics** with respect to perturbations of the system S(t): if $\tilde{G} \in C^k(\mathbb{R}^d, \mathbb{R}^d)$ is close to G then there exists a homeomorphism h which maps the trajectories of S(t) onto the trajectories of $\tilde{S}(t)$ (Palis 1968).

Classical results

• *d* = 1

The dynamics are gradient Morse-Smale property holds generically

• *d* = 2

Poincaré-Bendixson property holds Morse-Smale property holds generically (Peixoto 1962)

d ≥ 3

Kupka-Smale property holds generically (Kupka 1963, Smale 1967) There exists chaotic dynamics (Smale 1965) Non-density of stable dynamics (Guckenheimer and Williams 1979)

•
$$d \geq 1$$
, $G = -\nabla V$

The dynamics are gradient

Morse-Smale property holds generically (Smale 1961)

Let Ω be a regular bounded domain of \mathbb{R}^N , let p > N and $\alpha \in (N/p+1, 2)$. With suitable assumptions on f, the scalar parabolic equation

$$u_t = \Delta u + f(x, u, \nabla u)$$

generates a global dynamical system in $W^{\alpha,p}(\Omega)$ (+boundary conditions) and admits a compact global attractor \mathcal{A} .

 NB : often $\mathcal A$ is finite-dimensional but its dimension may be as large as wanted.

Generically with respect to *f* :

- $u_t = u_{xx} + f(x, u, u_x)$ on (0, 1) is Morse-Smale (Henry 1985)
- $u_t = \Delta u + f(x, u)$ is Morse-Smale (Brunovský-Poláčik 1997)
- $u_t = u_{xx} + f(x, u, u_x)$ on S^1 is Morse-Smale (Czaja-Rocha 2008 + RJ-Raugel 2009) (non gradient PDE)
- $u_t = \Delta u + f(x, u, \nabla u)$ is Kupka-Smale (Brunovský-RJ-Raugel in preparation) (non gradient PDE)

NB : for $\Omega = S^1$ Poincaré-Bendixson property hold

Let p(t) be a periodic solution of

$$u_t = \Delta u + f(x, u, \nabla u)$$

of minimal period T > 0.

Theorem – Brunovský-RJ-Raugel (2009)

Assume $f \in C^{\infty}(\Omega \times \mathbb{R} \times \mathbb{R}^{N}, \mathbb{R})$. Then there exists a dense open set of points $(x_{0}, t_{0}) \in \Omega \times \mathbb{R}$ such that if

$$(x_0, p(x_0, t_1), \nabla p(x_0, t_1)) = (x_0, p(x_0, t_0), \nabla p(x_0, t_0))$$

then $t_1 = t_0 + nT$ with $n \in \mathbb{Z}$.

Tools : if $v(x, t) = p(x, t) - p(x, t + (t_1 - t_0))$ is not trivial, then it solves a linear parabolic equation and thus cannot have a zero of infinite order. Then estimate sharply the size of the singular nodal set

$$\{(x,t)\in\Omega imes\mathbb{R},\ v(x,t)=0 \text{ and }
abla v(x,t)=0\}$$

(method of Hardt and Simon).

Open problem : similar result for systems of parabolic equations $U_t = \Delta U + F(x, U)$.

Generically with respect to f:

- $u_{tt} + \gamma u_t = \Delta u + f(x, u)$ is Morse-Smale (Brunovský-Raugel 2003)
- $u_{tt} + \gamma(x)u_t = \Delta u + f(x, u)$ (or boundary damping) on the segment (0, 1) is Morse-Smale (RJ 2005)

Need of punctual asymptotic

Let u(t) be a global solution in $H^1_0((0,1)) \times L^2((0,1))$ of

$$u_{tt} + \gamma(x)u_t = u_{xx} + f(x,u), \quad (x,t) \in (0,1) \times \mathbb{R}$$
.

Assume that u(t) converges to an equilibrium e when t goes to $+\infty$. Let A_e be the operator corresponding to the linearization of the equation at (e, 0).

Theorem – RJ (2005)

There exists a generic set of points $x_0 \in (0,1)$ such that

$$\lim_{t\to\infty}\frac{\ln\|u(t)-e\|_{H^1}}{t}=\lim_{t\to\infty}\frac{\ln|u(x_0,t)-e(x_0)|}{t}=\lambda$$

where λ is either $-\frac{1}{2}\int_0^1 \gamma(x)dx$ or the negative real part of an eigenvalue of A_e .

Tools : use the existence of a Riesz basis of eigenfunction of A_e and the asymptotics of the high frequencies (Cox-Zuazua 1994).

Open problem : dimension higher than one?

Theorem – Poláčik (1999)

There exist a domain $\Omega \subset \mathbb{R}^2$ and an open set of nonlinearities $f \in C^1(\mathbb{R})$ such that the parabolic equation

$$u_t = \Delta u + f(u), \quad u_{|\Omega|} = 0$$

admits two equilibrium points e_1 and e_2 for which $W^u(e_1)$ does not intersect $W^s(e_2)$ transversally.

Tools : perturb the disk so that the spectra of $\Delta + f'(e_i)$ are as wanted. Use the fact that the spaces of even and odd functions are invariant by the flow.

Open problem : perturbations with respect to the domain Ω give enough freedom to obtain generic stability results?

• Go beyond Kupka-Smale property for the dynamics of the scalar parabolic equations (Pugh closing lemma).

- Strongly damped wave equations $u_{tt} \Delta u_t = \Delta u + f(x, u).$
- Equations of fluids mechanic.

• ...

Appendix

$$u_t = u_{xx} + f(x, u, u_x)$$
 on (0, 1)

and X(t) = G(X(t)) on \mathbb{R} .

- Gradient dynamics
- Convergence to an equilibrium point
- Automatic transversality of stable and unstable manifolds
- Genericity of Morse-Smale property
- Knowledge of the equilibrium points implies knowledge of the whole dynamics
- Realization of the flow of the ODE in the dynamics of the PDE

$$u_t = u_{xx} + f(x, u, u_x)$$
 on S^1

and $\dot{X}(t) = G(X(t))$ on \mathbb{R}^2 .

- Poincaré-Bendixson property
- Automatic transversality of stable and unstable manifolds of two orbits if one of them is a hyperbolic periodic orbit
- Non-existence of homoclinic orbits for periodic orbits
- Genericity of Morse-Smale property
- Realization of the flow of the ODE in the dynamics of the PDE

 $u_t = u_{xx} + f(u, u_x)$ on S^1

and $\dot{X}(t) = G(X(t))$ on \mathbb{R}^2 and radial symmetry.

- Automatic transversality
- No homoclinic orbit
- Knowledge of the eq. points and of the periodic orbits implies knowledge of the whole dynamics
- Genericity of Morse-Smale property
- Realization of the ODE in the PDE

$$u_t = \Delta u + f(x, u, \nabla u)$$
 on Ω with $dim(\Omega) \ge 2$
and $\dot{X}(t) = G(X(t))$ on \mathbb{R}^d , $d \ge 3$.

- Existence of persistent chaotic dynamics
- Genericity of Kupka-Smale property
- Realization of the ODE in the PDE

$$u_t = \Delta u + f(x, u)$$
 on any Ω
and $\dot{X}(t) = -\nabla V(X(t))$.

- Gradient dynamics
- Genericity of Morse-Smale property
- Realization of the ODE in the PDE

Property of the number of zeros

The number of zeros of a solution of a one-dimensional linear parabolic equation satisfies a very special property. For example, let Ω be the circle S^1 .

Theorem – Sturm, Nickel, Matano, Angenent, Fiedler... (1836 and ${\sim}1980)$

Let a(x, t) and b(x, t) be in $C^2(S^1 \times \mathbb{R}_+, \mathbb{R})$. Let w be a non-trivial solution in $L^2(S^1)$ of

$$\partial_t w = \partial_{xx}^2 w + a(x,t)w + b(x,t)\partial_x w$$

Then, then number of zeros of w(t) is finite and non-increasing in time and strictly decreases at $t = t_0$ if and only if $w(t_0)$ has a multiple zero.

<u>Application</u>: if u and v are two solutions of $u_t = u_{xx} + f(x, u, u_x)$, then w = u - v satisfies the above result.