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Outline
3 fundamental questions

1. What is the picture ?

2. What is so special in the world we live in ?

3. What does it have to do with the title of the talk ?



The uniqueness of R
3

• Brownian motion is recurrent in R
1 and R

2,

i.e. the Brownian particle visits every region infinitely many times.

• Brownian motion is transient in R
d with d ≥ 3,

i.e. the particle will escape from any bounded region after some time forever.
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• Brownian motion is recurrent in R
1 and R

2,

i.e. the Brownian particle visits every region infinitely many times.

• Brownian motion is transient in R
d with d ≥ 3,

i.e. the particle will escape from any bounded region after some time forever.

Remark. The Brownian motion (Wiener process) can be rigorously constructed

via the heat kernel associated with the diffusion equation ut −
1
2∆u = 0 .



Analytic background of transience
[Grigor’yan 1999]

Theorem. Let M be a complete non-compact Riemannian manifold.
The following properties are equivalent:

1. Brownian motion on M is transient.

2. M is non-parabolic, i.e. ∃ non-constant positive superharmonic function.

3. −∆ is subcritical in M , i.e. ∃ Green function, finite off the pole.

4. ∀ precompact open subset of M has positive capacity.

5. −∆ has no virtual bound state, i.e. −∆ − εV ≥ 0 for all small ε. [V ∈ C∞
0 (M)]

6. ∃ Hardy inequality for −∆, i.e. −∆ ≥ w(·) with some positive w.
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1. Brownian motion on M is transient.

2. M is non-parabolic, i.e. ∃ non-constant positive superharmonic function.

3. −∆ is subcritical in M , i.e. ∃ Green function, finite off the pole.

4. ∀ precompact open subset of M has positive capacity.

5. −∆ has no virtual bound state, i.e. −∆ − εV ≥ 0 for all small ε. [V ∈ C∞
0 (M)]

6. ∃ Hardy inequality for −∆, i.e. −∆ ≥ w(·) with some positive w.

Remark. 5 reflects the spectral-stability effect of transience.
[non-trivial V ≥ 0, ε > 0]

σ(−∆R
d

− εV )
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Ω ⊂ M

Boring:

◦ Grigor’yan’s theorem remains true for Neumann boundary conditions,
i.e. if the Brownian motion reflects on ∂Ω.

◦ The motion is “generically” transient for Dirichlet boundary conditions,
i.e. if the Brownian motion dies on ∂Ω.

1. M is transient ⇒ Ω is transient

2. M is recurrent & M \ Ω is open ⇒ Ω is transient

Interesting: −∆ − λ1 for subdomains with Dirichlet b.c.

such that λ1 := inf σess(−∆) = inf σ(−∆) > 0

Natural candidates: TUBES
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D) > 0

1. ut −∆u = 0 ; vt − ∆v − λ1v = 0 by writing u(x, t) = e−λ1t v(x, t)

2. vt − ∆v = λ1v = heat source compensating the death of the particle on ∂Ω

study of fine properties of the transience

SΩ
D(t) := e(∆Ω

D
+λ1)t

Conjecture. Better time-decay of SΩ
D(t) iff −∆Ω

D − λ1 ≥ w(·) > 0 holds.

Complications:

1. ‖SΩ
D(t)‖L2(Ω)→L2(Ω) = 1 =⇒ topology of L2(Ω) is not good

2. polynomial decay-rate inherited from ‘dimensional’ properties of Ω

e.g. ‖SR
d

D (t)‖L2(Rd,K)→L2(Rd) ∼ t−d/4 as t → ∞, K(x) := e|x|
2/4
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Ω0 := R × ω where ω is a bounded domain in R
2

Ωθ :=
{(

x1, x2 cos θ(x1) + x3 sin θ(x1),−x2 sin θ(x1) + x3 cos θ(x1)
)
| x ∈ Ω0

}

Ωθ is twisted if:

1. θ : R → R is not constant
2. ω is not rotationally symmetric with respect to the origin in R

2

Ωθ is locally twisted if: θ̇ has compact support

σ(−∆Ωθ

D ) = σess(−∆Ωθ

D ) = [λ1,∞) where λ1 = inf σ(−∆ω
D) > 0

Theorem (Ekholm, Kovǎŕık, D.K. 2005). −∆Ωθ

D − λ1 ≥
cH

1 + x2
1

where cH = cH(θ̇, ω) ≥ 0 is positive if, and only if, Ωθ is twisted.

; boom: Briet, Exner, Fraas, Raikov, Sacchetti, Soccorsi, . . .
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Proof.

≥ self-similarity transformation,* weighted Sobolev spaces , . . .

= no twisting ‖S(t)‖L2(Ω0,K)→L2(Ω0) ∼ t−1/4 as t → ∞ q.e.d.

*[Escobedo, Kavian 1987]
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3. Changing the space L2(Ω0, K), K(y) = ey2
1/4 =⇒ compactness !

4. Asymptotic analysis As s → ∞, |σs(y1)| −→ ‖θ̇‖L1(R) δ(y1)

R × e−s/2ω −→ R

ϕs −
1
2 y1 ϕy1

− ϕy1y1
− 1

4 ϕ = 0 + Dirichlet b.c. at y1 = 0 iff Ωθ twisted
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Open problems :

¿ better topology than L2(Ωθ, K) → L2(Ωθ) ? NB K(x) = ex2
1/4

¿ Γ(Ωθ, K) = 3/4 if Ωθ is twisted ? (optimality)

¿ direct proof of the equivalence m ? (energy methods fail)

¿ general quasi-cylindrical domains ? (∃ Hardy inequality ⇔ improved decay rate)



Our conjecture
[D.K., Zuazua 2009]

Let Ω be an open connected subset of R
d. Let H and H+ be two self-adjoint

operators in L2(Ω) such that inf σ(H) = inf σ(H+) = 0. Assume that there is a

positive smooth function ̺ : Ω → R such that H+ ≥ ̺, while H − V is a negative

operator for any non-negative non-trivial V ∈ C∞

0 (Ω). Then there exists a positive

function K : Ω → R such that

lim
t→∞

‖e−H+t‖L2(Ω,K)→L2(Ω)

‖e−Ht‖L2(Ω,K)→L2(Ω)
= 0 .


