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Who is right ?

Fig.: The example of a pipeline and of the bronchial tree
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Inverse modelling in life science

Principle of inverse modelling

Question

Do the shapes in Nature try to optimize some criterion ?

Let us consider an organ or a part of the human body.

We write a mathematical model (e.g. a PDE) which describes
the behaviour of this organ.

We imagine a numerical criterion that Nature would like to
optimize.

We determine the optimal shape for this criterion and this
model.

We compare the theoretical shape with the real ones.
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Mathematical and Physical models
The shape of the trachea

Mathematical and Physical models (1)

U = set of simply connected domains of R
3 for which the

inlet E and the outlet S are fixed.

We assume that Ω ∈ U is crossed by a newtonian viscous
incompressible fluid, driven by the stationnary Navier-Stokes
system.

u = u(x1, x2, x3) = velocity of the fluid and p = p(x1, x2, x3)
= pressure of the fluid.
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Mathematical and Physical models (2)
The PDE

The fluid is driven by the Navier-Stokes PDE :

{
−µ△u + ∇p + u · ∇u = 0 x ∈ Ω
div u = 0 x ∈ Ω

Boundary conditions

1 Inlet E : we assume that the velocity of the fluid is known
(parabolic profile).

2 Lateral boundary Γ : we impose a no-slip boundary condition
(i.e. u = 0 on Γ).

3 Outlet S : we impose a condition of normal constraint.
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Mathematical and Physical models (3)
The criterion

We define :

The stretching tensor : ε(u) = 1
2(∇u + (∇u)T ).

The strain tensor : σ(u, p) = −pI3 + 2µε(u).

A good criterion from a physical point of view is :

J(Ω) = 2µ

∫

Ω
|ε(u)|2dx .
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Study of the shape optimization problem : 2 directions

1 A theoretical approach. (joint work with Antoine Henrot,
École des Mines de Nancy)
Is the cylinder an optimal shape to minimize the energy
dissipated by the fluid ?

2 A numerical approach. (joint work with Benjamin
Mauroy, CNRS, Paris)
What is the shape of a bifurcation (for instance, the trachea
and the daughter branches) minimizing the energy dissipated
by a fluid ?
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The optimal shape of a pipe

Question : do the cylinder minimize the energy dissipated by
the fluid ?

Let us consider a cylinder with length L > 0 and radius R > 0.

E

S

Γ
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Is the cylinder optimal ? (1)
The PDE on the cylinder






−µ△u + ∇p + u · ∇u = 0 x ∈ Ω
div u = 0 x ∈ Ω
u = u0 x ∈ E

u = 0 x ∈ Γ (No-slip condition)
σ(u, p) · n = 0 x ∈ S (normal flow),

with :

u0 = parabolic velocity profile ;

σ(u, p) = −pI3 + µ(∇u + (∇u)T ) = strain tensor.
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Is the cylinder optimal ? (2)

Let us remind that :

J(Ω) = 2µ

∫

Ω
|ε(u)|2dx .

Theorem. A non optimality result (A. Henrot, Y.P.)

The cylinder is not solution of the following shape optimization
problem : {

min J(Ω)
Vol(Ω) is given.
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Is the cylinder optimal ? (3)
Outlines of the proof (1)

Step 1 : calculus of the shape derivative.
Let f (t) := J((I + tV)Ω), for t small and V, a smooth vector
field.
The shape derivative of the criterion J is :

f ′(0) = dJ(Ω,V) = 2µ

∫

Γ

(
ε(u) : ε(v) − |ε(u)|2

)
(V · n)dσ,

where v is an adjoint state (≃ linearized Navier-Stokes
equation) :

(AS)






−µ△v + v · ∇u − u · ∇v + ∇q = −2µ△u x ∈ Ω
div v = 0 x ∈ Ω
v = 0 x ∈ E ∪ Γ
σ(v, q) · n + (u · n) − 4µε(u) · n = 0 x ∈ S .
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Is the cylinder ? (4)
Outlines of the proof (2)

Step 2 : mathematical analysis of the adjoint state.
A symmetry result : there exists three functions w , w3 and q̃
s.t. ∀(x1, x2, x3) ∈ Ω :

vi (x1, x2, x3) = xiw(r , x3), i ∈ {1, 2}.
v3(x1, x2, x3) = w3(r , x3),
q(x1, x2, x3) = q̃(r , x3).

Moreover,

(v, q) ∈ C 1(Ω) × C 0(Ω).
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Is the cylinder optimal ? (5)
Outlines of the proof (3)

Step 3 : a first order optimality condition.
Let us use the previous symmetry result.
There exists λ ∈ R s.t. :

dJ(Ω,V) = λ

∫

Γ
(V · n)ds,

which rewrites :
∂v3

∂n
= 0 on Γ .
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Is the cylinder optimal ? (5)
Outlines of the proof (3)

Step 4 : Conclusion. Let us introduce the functions :

w0(r , x3) :=

∫ x3

0
w(r , z)dz and ψ(z) =

∫

Γz

(q̃−2cr2w0)rdrdθ.

Lemme

The function ψ is affine.

Idea of the proof. We apply the divergence operator to the
PDE :

−µ△v + ∇q + ∇u · v −∇v · u = −2µ△u,

then, we integrate this equation on a strip of the cylinder.
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Is the cylinder optoimal ? (6)
Outlines of the proof (4)

Ingredients to conclude :

→ The pair (v, q) belongs to C 1 × C 0 in Ω.

→ We integrate the PDE giving v3 separately on E and on S .

→ We use the overdetermined condition ∂v3
∂n

= 0 on Γ.

We obtain :

ψ′(L) = −16µcπR2 and ψ′(0) = −8µcπR2 .

ψ is affine, then it is absurd !
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Extension of the previous result

Theorem. (A. Henrot, Y.P.)

The cylinder is not optimal :

in the case of a Navier-Stokes system, in 2D and 3D ;

in the case of a Stokes system, in 2D and 3D.

−→ A natural question : has the solution of the optimization
problem a cylindrical symmetry ?
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Symmetry of the optimum (1)

Only in the case of a Stokes system, that is possible to state the :

Theorem. (A. Henrot, Y.P.)

There exists a domain Ω minimizing the dissipated energy under
volume constraint which has a plane of symmetry containing the
vertical axis (going from the center of E to the center of S).

−→ An element of answer : has the optimum a cylindrical
symmetry ?

G. Arumugam and O. Pironneau showed that, in the case of a
Poiseuille flow (when the flow is proportional to he drop pressure
between the inlet and the outlet of the pipe), one improves the
criterion J by creating some vertical riblets.
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Symmetry of the optimum (2)

Let Ω, a solution of he shape optimization problem.

Step 1 : Selection of a domain with measure |Ω|/2.
There exists a plane containing the vertical axis, spliting Ω in
two domains with the same measure.
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Symmetry of the optimum (3)

Step 2 : “Symmetrisation” of the domain Ω.

Let Ω1 and Ω2 be the two domains with same measure.

If

∫

Ω1

|ε(u)|2dx ≤

∫

Ω2

|ε(u)|2dx , let :

û(x) =

{
u(x) if x ∈ Ω1

u(σ(x)) if x ∈ σ(Ω1)
and p̂(x) =

{
p(x) if x ∈ Ω1

p(σ(x)) if x ∈ σ(Ω1)

where σ is the symmetry operator with respect to the plane spliting
Ω in two domains with the same measure, and Ω̂ = Ω1 ∪ σ(Ω1).
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Symmetry de l’optimum (4)

Step 3 : Conclusion.

J(Ω̂) = min
u|divu=0

(
2µ

∫

bΩ
|ε(u)|2dx

)

≤ 2µ

∫

bΩ
|ε(û)|2dx

≤ J(Ω)

−→ Ω̂ is admissible (|Ω̂| = |Ω|).
−→ The previous inequalities are equalities.

Ω̂ minimizes the criterion J in the class of admissible shapes.
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Symmetry of the optimum (5)

−→ Is this propertie true for every minimizer of this problem ?
Yes, is the minimizer Ω is C2, using the analyticity of the solutions
of the Stokes problem.

Open Problems

Quid of the Navier-Stokes case ? (The “symmetrisation”
technic cannot be used a priori.)

Is it possible to prove stronger symmetry properties in the
Stokes and Navier-Stokes cases ?
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How dissipate a fluid through a bifurcation ?

On the optimal shape of a pipe
Numerical confirmation of the non optimality result

E

S

Γ
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The optimal shape of a pipe
How dissipate a fluid through a bifurcation ?

How dissipate a fluid through a bifurcation ? (1)
What choice of modelling ?

Fig.: The different boundary conditions

u = 0
u = 0

σ(u, p).n = 0
u = u0

u = u0

σ(u, p).n = 0
u = u0

σ(u, p).n = 0
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How dissipate a fluid through a bifurcation ? (2)
An Augmented Lagrangien like algorithm

Let τ > 0 and εstop > 0.
We define the augmented Lagrangian of the problem :

Lb(Ω, µ) = J(Ω) + µ (mes (Ω) − V0) +
b

2
(mes (Ω) − V0)

2.

Description of the algorithm

−→ Initialisation. Let Ω0 be fixed (initial shape of the tree) and
µ0 ∈ R.
−→ Iteration m : a gradient method
−→ Calculus of the descent direction : −∇Lb(Ωm, µm).

Resolution of the Navier-Stokes problem (solution um).

Resolution of the adjoint state (solution vm).
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How dissipate a fluid through a bifurcation ? (3)

−→ Determination of the displacement dm. We choose dm

solution of :

〈dm,w〉H1(Ωm) = −

∫

Γm

∇Lb(Ωm, µm) · wds, ∀w ∈ B(Ωm),

with B(Ωm)
déf
=

{
w ∈ H1(Ωm) | w|E∪S

= 0
}
.

Then :

0 ≤ 〈dm,dm〉H1(Ωm) = −

∫

Γm

∇Lb(Ωm, µm) · dmds

= −〈dLb(Ωm, µm),dm〉.
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How dissipate a fluid through a bifurcation ? (4)

−→ Determination of Ωm+1 : Ωm+1 = (I + εmdm)(Ωm).

−→ Reinitializing of the Lagrange multiplier :

µm+1 = µm + τ (mes (Ωm+1) − V0)

−→ Stopping criterion.
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The optimal shape of a pipe
How dissipate a fluid through a bifurcation ?

How dissipate a fluid through a bifurcation ? (5)
Some numerical results

Fig.: On the right, volume as a function of the iteration and n the left,
the criterion as a function of the iterations
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The optimal shape of a pipe
How dissipate a fluid through a bifurcation ?

How dissipate a fluid through a whole tree ? (1)

Case of a tree driven by a Poiseuille fluid (with Xavier Dubois
de la Sablonière, Supélec) : theoretical study of the shape
optimization problem. (existence of a minimizing sequence
closing all the branches of the tree except one)

Case of a tree driven by a Navier-Stokes fluid (with Benjamin
Mauroy, CNRS) : numerical study. (confirmation of the result
obtained in the Poiseuille case)
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The optimal shape of a pipe
How dissipate a fluid through a bifurcation ?

How dissipate a fluid through a whole tree ? (2)

Fig.: An example of dichotomous tree of three generations

−→ a pipe

p2,1 p2,2

↓ Φ

p2,3 p2,4
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Prospects (1)

Would the cylindrical pipe be optimal for other reasonnable
data at the inlet and the outlet ?

Existence en characterization of an optimum in a class of
simply connected domains having a cylindrical symmetry
(joint work with Maitine Bergounioux, MAPMO, Orléans)

The study of an other criterion may be interesting :

J1(Ω) :=

∫

S

p(s)ds −

∫

E

p(s)ds (drop pressure)

Give the minimization of such a criterion the shape of the
bronchial tree ?
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Prospects (2)

J2(Ω) :=

∫

∂Ω
|σ(u, p)|2dx . (constraints)

Application to the aorta coarctation problem.
=⇒ Joint work with Benjamin Mauroy.

Yannick Privat PDE, optimal design and numerics



Introduction
The optimal shape of a pipe

Numerical research of of optima
Prospects

Thank you for your attention !
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