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Maxwell's equations in harmonic case

» E : total electric field

» H : total magnetic field

curl E = iwpg p(x,w) H
curl H = —iweg e(x,w) E

+ radiation conditions :

(E9 HY) =0 <|)1(|> . weo <|XX| A Ed> —kHY =0 <|X1|> .

(E9,HY) = (E — E', H — H') is the diffracted field

> 4 is the premeability tensor (=~ Id in nature)
> ¢ is the permittivity tensor (relative)

» w waves frequency (angular)
> ko := \/Eofto w wave number




First step: Homogenization of a periodic array of finite
metallic fibers

We start by considering the following fibered structure
(as Guy Bouchitté & Didier Felbacq in 2006).
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Q:=wx(-L/2,L/2), r,<n fibers with very thin section.



Scaling assumptions
We define

e ), the volume of fibers:

e v > 0 the limit average capacity of fibers per unit of volume:

1
—_
n? log r,

e 0, — oo the fibres conductivity
e k € [0,400] the limit average conductivity of the structure.

ko= limk, , Ky:=0,0,.
n—0



First problem

We have to pass to the limit when n — 0 in :

curl B, = iwpoH,y,

curl H,, = —iwepe, Ey
+ radiations conditions
1 on R3\ T,
with Ep = . \ Ty
1+io, on T,
The problem is to pass to the limit in the 2" equation.
. . E
We decompose ¢, E, in E, + if,, where F, := /@7,9—7’177]
n

curl Hy = —iweo(E, + iF,)



E,—~E , H,—Hy , F;— Fgin mesure

Eo(x,-), Ho(x,-) and Jo(x,-) are Y-periodic
We can prove that :

div,Fo =0, and supp Fp C Sp where

So == {(0,0)} x[~3, 3]

Fo(x,y) = f(x)e3ds, (being ds, the line ditribution along Sp).



Passing to the limit in Maxwell problem we find

{ curl E = jwpuo H dans R3

curlH = —iweg (E + ifeslq)

To close the system we show that j satisfies the following one
dimensional boundary value problem:

o0*f o 2imy : of n
M+<ko+ - ) f = 2imy E3 on Q, 8—){3:0 on w;

Result obtained by Bouchitté & Felbacq in 2006.
Remark

» This limit problem is non-local.

» When L = oo the problem become local in the TE. case



Second step: Reiterated homogenization

Figure: The second diffraction structure and unit cell.



Second problem

Plugging the system of effective equations of the first step on the

new structure, we obtain:

curl E,
curl Hy,
2
gxfz <ko 2IZFY> o
of,
Ox3
+ radiation conditions

iwpoH,y,

—iweo(En + I'].):n f;7

2imy Ey - e3

0

e3)

on R3
on R3

on X,

on DF




Problem in the unit cell

We have

EnAEo s HnAHo s anfo

By classical arguments, we prove :

e div,Hy =0, curl yHp =0
° curIyEo =0, divy(Eo+ 1y fo)ZO

2imy 1 [P
o foy = fo(x,y1,)2) = m 5 /—h/2 Eo(x, y1,y2,y3) - €3 dys

Remark
dfo

fo(x,-) is supported in ¥~ and —
dys

=0



Electrostatic problem

We have

e Ho(x,-) is constant, Hp(x,y) = H(x)

e Eo(x,-) in term of a suitable periodic scalar potential ®(x, -):
Eo(x.y) = E(x) + ¥, ®(x,y) .
o O satisfies the following electrostatic problem
Ayd =i fo(op+ —p-)

2imy
fo = @+ 2 (Es + [®]),
h

1 h
where [®](x, y1,2) 1= 5<¢(X7y1,y2, 5) - ¢(X7y1,yz,—§)>.




Micro-resonator problem

We introduce the operator B define by

B:1%(D) — [2(D)
w = [ew](y1y2)

where ¢, is the unique Y-periodic solution of

—Apy, = w(dp+ —dp-)

The previous system in fy can be express in term of the operator B
by
kg i

86 - (52 +1) 6 = ~iEa(x).

2ty K



Spectral problem

We have

e B is a positive compact selfadjoint operator
® Yy>UV 2V 2 Vg >

- — 0 be the eigenvalues of B and
{en

n € N} an associated orthonormal basis of L?(D)

Then we decompose fy in this base so fo := )", chn

n

. ¥
fo(x,y1,¥2) = /E3(X)Z # e
n ﬁ_yn‘i_

KA
K




The limit of the term £, 1y in the second equation of the global
system can be identified as the average

/ fo(x, y1,y2) dyrdy>
>

We can now pass to the weak limit into the two first equations of
the initial problem

curl £, = iwpoHy, on R3
curl H, = —iweo(E,+ils, fye3) onR3



Limit problem

The limit system reads

curl E = iwpo H
curl H = —iwepe® (x,w) E .

eff (

With diagonal tensor ¢ (x, w) given by

e(x,w)=1d inR3\Q

and in Q:

fF fF fF (f <Pn)

enn(xw)=en(xw)=1 , ex(xw)= —hE X2 o ;
noamy ~Vnt g

and changes of sign when k2(w) = eopo w? passes through the
eigenvalues (resonances) and becomes very large.



Effective permittivity and numerics

D = (-0.25,0.25)2, h=0.5 and v = 1.

Figure: Effective permittivity of
the second structure for k = 100

Figure: Effective permittivity of
the second structure for k = 1000




Variant with three directions of fibers

By mixing the directions of the fibers in each inclusions of the
second structure, as depicted in the figure, we can reach all
effective tensors of the kind

h > — _Uown)® 0 0
271“1 1+7 2 )
eoff — jg— 0 hy Y el 0
0 V2+7’
27y n' ko
0 0 hy 3 —Joenl
27“,3 1/2—0—%

where there is no relation between the different ¢/, v/ and h;.



thank you for your attention
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