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Maxwell’s equations in harmonic case

◮ E : total electric field

◮ H : total magnetic field

{

curlE = iωµ0 µ(x , ω) H

curlH = −iωε0 ε(x , ω) E

+ radiation conditions :

(Ed , Hd) = O

(

1

|x |

)

, ωε0

(

x

|x | ∧ Ed

)

− kHd = o

(

1

|x |

)

.

(Ed , Hd) = (E − E i , H − H i ) is the diffracted field

◮ µ is the premeability tensor (≃ Id in nature)

◮ ε is the permittivity tensor (relative)

◮ ω waves frequency (angular)

◮ k0 :=
√

ε0µ0 ω wave number



First step: Homogenization of a periodic array of finite

metallic fibers

We start by considering the following fibered structure
(as Guy Bouchitté & Didier Felbacq in 2006).
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Ω := ω × (−L/2, L/2), rη ≪ η fibers with very thin section.



Scaling assumptions

We define

• θη the volume of fibers:

θη :=
πr2

η

η2
→ 0

• γ > 0 the limit average capacity of fibers per unit of volume:

1

η2 log rη
→ γ

• ση → ∞ the fibres conductivity

• κ ∈ [0, +∞] the limit average conductivity of the structure.

κ := lim
η→0

κη , κη := ση θη .



First problem

We have to pass to the limit when η → 0 in :







curl Eη = iωµ0Hη,
curl Hη = −iωε0εηEη

+ radiations conditions

with εη :=

{

1 on R
3 \ Tη

1 + iση on Tη

The problem is to pass to the limit in the 2nd equation.

We decompose εηEη in Eη + iFη where Fη := κη
Eη

θη
1Tη

curl Hη = −iωε0(Eη + iFη)



Eη ⇀⇀ E0 , Hη ⇀⇀ H0 , Fη ⇀⇀ F0 in mesure

E0(x , ·), H0(x , ·) and J0(x , ·) are Y -periodic

We can prove that :

div yF0 = 0, and supp F0 ⊂ S0 where

S0 := {(0, 0)}×[−1
2 , 1

2 ]

F0(x , y) = f (x) e3 δS0 (being δS0 the line ditribution along S0).



Passing to the limit in Maxwell problem we find

{

curl E = iωµ0 H

curl H = −iωε0 (E + i f e31Ω)
dans R

3

To close the system we show that j satisfies the following one
dimensional boundary value problem:

∂2f

∂x2
3

+

(

k2
0 +

2iπγ

κ

)

f = 2iπγ E3 on Ω,
∂f

∂x3
= 0 on ω±

L

Result obtained by Bouchitté & Felbacq in 2006.

Remark

◮ This limit problem is non-local.

◮ When L = ∞ the problem become local in the TE. case



Second step: Reiterated homogenization
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Figure: The second diffraction structure and unit cell.



Second problem

Plugging the system of effective equations of the first step on the
new structure, we obtain:







































curl Eη = iωµ0Hη on R
3

curl Hη = −iωε0(Eη + i 1Ση
fη e3) on R

3

∂2fη

∂x2
3

+

(

k2
0 +

2iπγ

κ

)

fη = 2iπγ Eη · e3 on Ση

∂fη

∂x3
= 0 on D±

η

+ radiation conditions



Problem in the unit cell

We have
Eη ⇀⇀ E0 , Hη ⇀⇀ H0 , fη ⇀⇀ f0

By classical arguments, we prove :

• div yH0 = 0, curl yH0 = 0

• curl yE0 = 0, div y (E0 + 1Σ f0) = 0

• f0 = f0(x , y1, y2) =
2iπγ

k2
0 + 2iπγ

κ

1

h

∫ h/2

−h/2
E0(x , y1, y2, y3) · e3 dy3

Remark

f0(x , ·) is supported in Σ and
∂f0

∂y3
= 0



Electrostatic problem

We have

• H0(x , ·) is constant, H0(x , y) = H(x)

• E0(x , ·) in term of a suitable periodic scalar potential Φ(x , ·):

E0(x , y) = E (x) + ∇yΦ(x , y) .

• Φ satisfies the following electrostatic problem

∆yΦ = i f0 (δD+ − δD−)

f0 =
2iπγ

k2
0 + 2iπγ

κ

(E3 + [Φ]),

where [Φ](x , y1, y2) :=
1

h

(

Φ(x , y1, y2,
h

2
) − Φ(x , y1, y2,−

h

2
)
)

.



Micro-resonator problem

We introduce the operator B define by

B : L2(D) → L2(D)
w → [ϕw ](y1, y2)

where ϕw is the unique Y -periodic solution of

−∆ϕw = w (δD+ − δD−)

The previous system in f0 can be express in term of the operator B

by

B(f0) −
(

k2
0

2πγ
+

i

κ

)

f0 = −i E3(x) .



Spectral problem

We have

• B is a positive compact selfadjoint operator

• ν0 > ν1 ≥ ν2 · · · ≥ νn ≥ · · · → 0 be the eigenvalues of B and
{ϕn : n ∈ N} an associated orthonormal basis of L2(D)

Then we decompose f0 in this base so f0 :=
∑

n cnϕn

f0(x , y1, y2) = i E3(x)
∑

n

∫

D
ϕn

k2
0

2πγ − νn + i
κ

ϕn



The limit of the term fη 1Ση
in the second equation of the global

system can be identified as the average

∫

Σ
f0(x , y1, y2) dy1dy2

We can now pass to the weak limit into the two first equations of
the initial problem

{

curl Eη = iωµ0Hη on R
3

curlHη = −iωε0(Eη + i 1Ση
fη e3) on R

3



Limit problem

The limit system reads

{

curl E = iωµ0 H

curl H = −iωε0ε
eff (x , ω) E .

With diagonal tensor εeff (x , ω) given by

εeff (x , ω) = Id in R
3 \ Ω

and in Ω :

εeff
11 (x , ω) = εeff

22 (x , ω) = 1 , εeff
33 (x , ω) = 1−h

∑

n

(
∫

D
ϕn)

2

k2
0

2πγ − νn + i
κ

.

and changes of sign when k2
0 (ω) = ε0µ0 ω2 passes through the

eigenvalues (resonances) and becomes very large.



Effective permittivity and numerics

D = (−0.25, 0.25)2, h = 0.5 and γ = 1.
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Figure: Effective permittivity of
the second structure for κ = 100
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Figure: Effective permittivity of
the second structure for κ = 1000



Variant with three directions of fibers

Ω

By mixing the directions of the fibers in each inclusions of the
second structure, as depicted in the figure, we can reach all
effective tensors of the kind

εeff = Id−

















h1
∑ (

R

D
ϕ1

n)
2

k2
0

2πγ1
−ν1

n+ i
κ1

0 0

0 h2
∑ (

R

D
ϕ2

n)
2

k2
0

2πγ2
−ν2

n+ i
κ2

0

0 0 h3
∑ (

R

D
ϕ3

n)
2

k2
0

2πγ3
−ν3

n+ i
κ3

















,

where there is no relation between the different ϕi
n, ν i

n and hi .



thank you for your attention
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