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The Definition of a cylindrically perforated domain Ωε

(a) The cell of perforation (b) The domainΩε

Workshop on PDE’s, Optimal Design and Numerics,Benasque, 2009 – p. 2/12



Classification of the thin cylinders

The domainΩε is defined by removing the thin cylindersT k

ε from Ω.

We use the following decomposition for the boundary of this

domain:

∂Ωε = Γ1

ε ∪ Γ2

ε ∪ Γ3 ∪ ∂Tε.

We consider three types of possible cross-sizes of thin cylinders. If

the limit of

σε = ε2 (log 1/rε) . (1)

asε tends to zero, is positive and finite then the cross-size of the

cylinders is called critical.
If lim

ε→0
σε = +∞, the cross-size of cylinders is smaller and if

lim
ε→0

σε = 0, the cross-size is larger.
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The statement of optimal control problem

Find a boundary velocity fieldαε =
(
αk1

, αk2
, ..., αkJε

)
and a

corresponding velocity-pressure pair(yε, pε) such that the functional

Jε(αε,yε) = λ

∫

Ωε

|∇yε|
2 dx +

βε

rε

Jε∑

j=1

∫

∂T
kj
ε

∣∣αkj

∣∣2 dH2 (2)

is minimized subject to the steady-state Navier-Stokes equations

−ν△yε + (yε · ∇)yε + ∇pε = fε in Ωε, (3)

div yε = 0 in Ωε, (4)

yε|Γ1
ε

= y1

ε, yε|Γ2
ε

= y2

ε , yε|Γ3 = 0, (5)

yε|
∂T

kj
ε

= αkj
, ∀ j = 1, . . . , Jε. (6)
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The set of admissible solutions

We say that a triplet(αε,yε, pε) is admissible to the optimal control problem, if

αε ∈ Uε, where

Uε =





αε =

(
αk1

, αk2
, ..., αkJε

)

∣∣∣∣∣∣∣∣

αkj
= u|

∂T
kj
ε

, ∀j = 1, . . . , Jε

∀u ∈ H1
sol(Ωε) ∩ H2(Ω) : ‖u‖H2(Ω) 6 γ,

u|Γ1
ε

= y1
ε, u|Γ2

ε
= y2

ε, u|Γ3
ε

= 0.






and the pair(yε, pε) ∈ H1(Ωε) × L2
0(Ωε) is a corresponding solution of the

variational problem

νaε(yε,v) + cε(yε,yε,v) + bε(v, pε) =

∫

Ωε

fε · v dx, ∀v ∈ H1
0(Ωε),

bε(yε, q) = 0, ∀ q ∈ L2
0(Ωε),

yε|Γ1
ε

= y1
ε , yε|Γ2

ε
= y2

ε, yε|Γ3
ε

= 0, yε|
∂T

kj
ε

= αkj
, ∀j = 1, . . . , Jε.
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Solvability result

Theorem 1.Let αε be an admissible control (αε ∈ Uε), and let

uε ∈ H1
sol(Ωε) ∩ H2(Ω) be its prototype. Then there exists a corresponding

velocity-pressure pair(yε, pε) ∈ H2
sol(Ωε) ×

[
H1(Ωε) ∩ L2

0(Ωε)
]

satisfying the

original boundary value problem in the following variational sense:

yε − uε ∈ H1
0,sol(Ωε), (7)

aε(yε,v) + cε(yε,yε,v) =

∫

Ωε

fε · v dx, ∀v ∈ H1
0,sol(Ωε), (8)

∇pε = ν△yε − (yε · ∇)yε + fε in D′(Ωε). (9)

Theorem 2.The optimal control problem (Pε) has a solution iff this problem is

regular, that is,Ξε 6= ∅ for every fixedε > 0.
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General settings

The object of our consideration is the following the parameterized

optimal control problem (OCPε):

(OCPε) : min {Iε(u, y) : (u, y) ∈ Ξε} , (10)

where

(B1) (CFε) Iε : Uε × Yε → R is a cost functional;

(B2) Yε is a space of states ;

(B3) Uε is a space of controls;

(B4) Ξε ⊂ {(uε, yε) ∈ Uε × Yε : u ∈ Uε, Iε(u, y) < +∞} is a set

of all admissible pairs linked by some state equation (SEε), and

control and state constraints(CSCε).
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Main goal

Any OCP that can be described as follows

(OCPε) :






(CFε) : Iε(u, y) → inf ,

subject to

(CSCε) : (u, y) ∈ Uε × Yε, u ∈ Uε ⊂ Uε ,

(SEε) : Lε(u, y) + Fε(y) = 0.

(11)

The question is: what does it mean the ”behaviour” of an optimal

control problem(OCPε) under various values of the parameterε?
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Convergence formalism

Definition 1. Let (αε,yε, pε) be any admissible solution to the problem (Pε).

Then we say that a triplet(uε, y̆ε, p̆ε) ∈ Xε is a prototype to(αε,yε, pε), if

Xε =
[
H1

sol(Ωε) ∩ H2(Ω) ∩ L2(Ω, dηr(ε)
ε )

]
×

[
H1

sol(Ωε) ∩ H1(Ω))
]
× L2

0(Ω),

uε is a control prototype, and(y̆ε, p̆ε) are some extensions of the functions

(yε, pε) on the wholeΩ.

Definition 2. We say that a bounded sequence{(αε,yε, pε) ∈ Ξ ε}ε>0 is

w-convergent to a triplet(u,y, p) ∈ H2(Ω) × H1(Ω) × L2
0(Ω) in the variable

spaceX ε asε tends to zero (in symbols,(αε,yε, pε)
w

−→ (u,y, p)), if some

bounded sequence of its prototypes
{

(uε, y̆ε, p̆ε) ∈ Ξ̂ ε

}

ε>0
converges to

(u,y, p) in the following sense:

(i) uε ⇀ u in H2(Ω); (ii) p̆ε ⇀ p in L2
0(Ω); (iii) y̆ε ⇀ y in H1(Ω).
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Definition of suboptimal controls

Definition 3. We say that a functionα sub
ε =

(
αsub

k1
, αsub

k2
, ..., αsub

kJε

)
is an

asymptotically suboptimal control for the problem(Pε) if

αsub
kj

∈ H1/2(∂Tkj

ε ),

∫

∂T
kj
ε

n · αsub
kj

dH2 = 0, ∀j = 1, . . . , Jε,

and for everyδ > 0 there isε0 > 0 such that

∣∣∣∣∣ inf
(αε,yε ,pε)∈Ξε

Jε(αε,yε) − Jε(α
sub
ε ,y sub

ε )

∣∣∣∣∣ < δ, ∀ ε < ε0,

wherey sub
ε = yε(α

sub
ε ) denotes the corresponding solution of the original

boundary value problem.
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Main result. Theorem 1.

Assume that the origin belongs to a smooth part of the boundary ∂Q and condition

C0 = limε→0 ε2 (log 1/rε) = +∞ holds true. Then the boundary velocity field

α sub
ε =

(
αsub

k1
, αsub

k2
, ..., αsub

kJε

)
= Λε(u

0)
∣∣
∂Tε

can be taken as the suboptimal control, whereΛε : H1
sol(Ω) 7→ H1

sol(Ωε) is some

linear bounded operator, andu0 is a solution to the following problem: the

functional
∫
Ω
|u(x)|

2
dx is minimized subject to the constraints






u(x) ∈ H2(Ω)

∣∣∣∣∣∣∣∣∣∣

‖u‖H2(Ω) 6 γ, ∇ · u = 0 in Ω,

u|Γ1 = y∗|Γ1 , u|Γ2 = y∗|Γ2 , u|Γ3 = 0,

y∗ · n = 0 on Γ1 ∪ Γ2,






(12)
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Main result. Theorem 2.

Assume that the origin belongs to a smooth part of the boundary ∂Q and condition

0 < C0 = limε→0 ε2 (log 1/rε) < +∞ holds true. Then any optimal control to

the problem (for Brinkman-type law)

J0(u,y) = λ

∫

Ω

|∇y|2 dx +
2πλ

C0

∫

Ω

|y − u|
2

dx + β|∂Q|H

∫

Ω

|u|
2

dx −→ inf,

−ν△y +
2πν

C0
(y − u) + (y · ∇)y + ∇p = f in Ω;

divy = 0 in Ω, y|∂Ω = u|∂Ω;

p ∈ L2
0(Ω), u ∈ H2(Ω), y − u ∈ H1

0,sol(Ω), ‖u‖H2(Ω) 6 γ.

can be taken as the suboptimal one to the original problem.
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