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The Definition of a cylindrically perforated domain ().

(a) The cell of perforation (b) The domairtf?,
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The domair(), is defined by removing the thin cylinderg from Q.
We use the following decomposition for the boundary of this
domain:

00, =T uT?uUr® uor..

We consider three types of possible cross-sizes of thimaghs. If
the limit of

0. =¢c*(logl/r,). (1)

ase tends to zero, is positive and finite then the cross-sizeef th

cylinders is called critical.
If lim 0. = +o00, the cross-size of cylinders is smaller and if

e—0

limo. = 0, the cross-size Is larger.

e—0
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The statement of optimal control problem

Find a boundary velocity field. = (o, , ax,, ..., ax, ) and a
corresponding velocity-pressure peyr., p.) such that the functional

j(&67YE _)\/ WygIdeJrﬁ

> [ o @

g .
k.
oT. "’

IS minimized subject to the steady-state Navier-Stokes@ojs

_VAya + (ya : v)Y& + v]?a — 1e In Qaa (3)
divy. =0 In (), (4)
Yelri =¥i, Yelrz = y2, ¥elrs =0, (5)

yg‘aTkj = Ckkj, \V/] — 1, oo oo Jg. (6)
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We say that a tripleta., y., p.) is admissible to the optimal control problem, if
a. € U,, where

( OéijU‘aTkj,\V/jzl,...,Jg |
Ue = (@ = (aky; Qiyy -, 0y, ) | Yu € HE () NH2(Q) : |ullgey <7,
\ u‘r,}_ =Y, u|rg =Yz, u|rg = 0. )

and the paify.,p.) € H(Q.) x L2(.) is a corresponding solution of the
variational problem

ua5<y€,v>+c€<y€,y€,v>+b€<v,p€>:/ £ .vde, VveH,(Q),
Q.

be(ye,q) =0, Vqe Li(e),

yce‘ré ZY;7 y$|rg :yg7 y%‘pg = 0, y<€|8 kj — Ok, Vi=1,...,J..

T.’
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Theorem 1.Leta. be an admissible contrai( € U.), and let
u. € H (Q.) N H?(Q) be its prototype. Then there exists a corresponding

sol

velocity-pressure paify., p-) € H2 ,(Q.) x [H (%) N L3(Q.)] satisfying the

sol

original boundary value problem in the following variatedrsense:

Y: — Ue S H(l),sol(ﬂs)y (7)

) e o) = / £ ovde, VveH) (), (8
Q.

Vp. =vAy. — (y. - V)y. +f. in D'(Q.). ©)

Theorem 2. The optimal control problemP{) has a solution iff this problem is
regular, that is=. # @ for every fixeds > 0.
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The object of our consideration is the following the parameed
optimal control problem@CP.):

(OCP,) : min{/l.(u,y) : (u,y) € =}, (10)

where

(B1) (CF,) I. : U, x Y. — Ris a cost functional;
(B2) Y. is a space of states ;

(B3) U. is a space of controls;

(B4) Ee C {(usays) S Us X Ys SNIAS Usa L:(uay) < +OO} Is a set
of all admissible pairs linked by some state equatkif. §, and
control and state constraint€SC.,).
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Any OCP that can be described as follows

2

(CF,) : I(u,y) — inf,
(OCP.) < subject to
(CSC,) : (u,y) € U, x Y., u € U, C U,
. (SEe) : Le(u,y) + Fe(y) = 0.

(11)
The question is: what does it mean the "behaviour” of an ogitim
control problemOCP,) under various values of the parameter
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Convergence formalism

Definition 1. Let (a.,y., p-) be any admissible solution to the problef ).
Then we say that a triplé€u., y., p.) € X, is a prototype tda., y., pe), if

X = [H, () N HA(Q) N LA(Q, dnf')| x [Hi (@) nHY(Q)] x L3(9),
u. IS a control prototype, an@ ., p-) are some extensions of the functions
(¥, pe) On the whole&.

Definition 2. We say that a bounded sequed¢a.,y.,p.) € Ec}.., Is
w-convergent to a tripletu, y, p) € H2(Q) x H'(Q) x L3(Q) in the variable

w

spaceX . ase tends to zero (in symbol$q., y.,p:) — (u,y,p)), if some

bounded sequence of its prototy[{e(sls, Ve, Pe) € @8} converges to
e>0

(u,y, p) in the following sense:
(i) u. — uin H2(Q); (i) p. — pin LZ(Q); (i) y. — y in H(Q).
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Definition of suboptimal controls

Definition 3. We say that a functiory 5® = (afgb, ot .. ozf(“b> is an
asymptotically suboptimal control for the probl€i®. ) if
b e HY2(9TX9), / on-ogdH? =0, Vi=1,...,J,
o1’

and for everyy > 0 there iss; > 0 such that

inf  J(@,y.) — T (@, y )| < 5, Ve < e,

(Ce,Ye ;Pc)E Ex

wherey %’ =y, (a“) denotes the corresponding solution of the original
boundary value problem.
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Main result. Theorem 1.

Assume that the origin belongs to a smooth part of the boyn@i@rand condition
Co = lim. o ? (log1/7.) = +oo holds true. Then the boundary velocity field

—sub sub sub sub\ __ 0
al" = (ozkl , Qs ,...,oszg) = A.(u )‘8T€

can be taken as the suboptimal control, where H! ,(Q) — H!  (Q.) is some
linear bounded operator, and is a solution to the following problem: the
functional |, lu(z)|? dz is minimized subject to the constraints

( )
HuHHQ(Q) <,77 V-u=0In Q)

{ u(z) € H*(Q) Ulps = ¥*[p, Ulpe = y¥[pe, ulps =0, (12)

y* -n=0 on 't uI?,

Workshoo on PDE’s. Optimal Desian and Numerics. Benasod@ 2 p. 11/



Main result. Theorem 2.

Assume that the origin belongs to a smooth part of the boyn@i@rand condition

0 < Cp = lim._,ge” (log1/r.) < +oo holds true. Then any optimal control to
the problem (for Brinkman-type law)

2T A
Jo(u,Y)Z)\/\VY|2de+ d /Iy—ul dflf+ﬁ\6’QIH/\u\ dr — inf,
Q

2 :
—yAy+CLV( —u)+(y-V)y+Vp=£f in Q;
0

divy =0 in Q, yl|oa = ulsq;
p < L(Q)(Q)p u c H2(Q)7 Yy —uc H(l),sol(Q)7 ||u||H2(Q) < Y

can be taken as the suboptimal one to the original problem.
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