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I. Introduction

• To what extent can we manipulate the electronic properties 
of graphene by selective cutting and/or application of potentials
at very short length scales?

• New ideas for integrated circuit technology 
Metallic conductivity ï low power dissipation, higher
frequency operation than traditional semiconductors
High thermal conductivity ï cooling less challenging 
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Two high symmetry directions for creating ribbon edges in graphene:
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Zigzag edge

Basic component: Graphene ribbon

• Just nearest neighbor hopping 
• Easily solve for states and 
spectrum in tight-binding.

• Results may be understood
from Dirac equation.
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Zigzag ribbon: tight-binding results

Lowest subband:
• Chiral edge mode
• Zero energy states,

confined to edge
• “Valleytronics”
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Missing row of atoms all from same sublattice

Boundary condition:
φB,(K,K’)(x=0)=0

for each valley separately.

What is the appropriate boundary condition?

Resulting energies:

=  tight-binding

x    =  Dirac equation



Armchair ribbon: tight-binding results

• Two of every three widths gapped
• Valleys overlap in this orientation
• Transverse wavefunctions have

rapid oscillations
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Zigzag edgex/a0 =     1     2    3    4  …..



For armchair ribbons, boundary condition admixes valleys.
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Missing row of atoms with equal number of atoms from both sublattices

Boundary conditions:
φB(x=0)+φ´B(x=0)=0
φA(x=0)+φ´A(x=0)=0
Admixes valleys

Boundary conditions for both edges fixes transverse wavevector:

j = 0,1, or 2 = remainder of  (#columns)/3�� �
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 ï j = 0 ribbons have gapless spectra and

are metallic when undoped.



II.  Graphene Junctions

Metallic (j=0) armchair ribbons are interesting and 
relatively simple to work with:

• Transverse wavefunctions do not depend on ky
• 1D Dirac spectrum
• Interesting symmetry property:
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yields a w/f at same 
energy which satisfies 
appropriate boundary

condition.



Express in terms of a matrix:
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• Matrix maps state with kn > 0 to state with kn < 0.
• States with kn = 0 are special:
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Lowest subband states
of metallic AC ribbons
are chiral.



So what happens at a junction? Can the chirality be preserved?

Yes, for appropriately 
formed junction.
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Result may be understood via single mode approximation.

• Match ribbon wavefunctions (é, è)
and current (ò) along joining surface.

• Transmission amplitude proportional 
to overlap on joining surfaces:
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For py ö 0, find M0,0 = ≤i !



Other kinds of junctions give more complicated results.

Transmission through equilateral triangles.



Single mode approximation….

1. Two-lead triangle.

º

Confined
state

Confined
state

fl Suppressed transmission at low energy



2. Three-lead triangle: view as two-step transmission.
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Find in limit pyö 0, overlap
between lowest subbands of

1 and 2
vanish on joining surface.

fl Vanishing transmission in SMA

Note importance 
of corner 
geometry:



Transmission through hexagons:

60°

120°

180°

Low energy Full bandwidth

Low energy Full bandwidth

Low energy Full bandwidth

Current In



III.  Armchair Rings: Breaking Effective Time Reversal Symmetry

Wavefunctions have discontinuities at corners.
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Rotational quantum number

Summary of fits for lowest energy levels:

Measured
from E=0
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fl Continuity of wavefunctions around ring, when phase
jumps included.



At low energy, ring with 60° corners is equivalent to annulus
with “flux” tubes, carrying matrix gauge field.

• ψ£ everywhere continuous
• “Broken effective time-reversal symmetry”
• Analog of gauge fields from disclinations: 

Vozmediano et al, 1993

; �	< � �
�
% �
�

( ��� �� ��
 � � �� ��
 ; ( �� � � �
�� ��
 � � �

�� ��


� �
��
5

5

=




Because net effective flux through ring is different than zero
for each eigenvalue of T, Py=0 (ε = 0) not an allowed eigenvalue.

But effective flux may be cancelled by real magnetic flux.

F

Effective flux cancelled
when half flux quantum

applied through ring



Pentagons and Heptagons

• When bonds undistorted these live
on surface with curvature

• Effective flux through ring is 
≤(5/4)F0, ≤(7/4)F0.

• Particle-hole symmetry broken: a topological property of network
• Py=0 state restored at quarter flux
• Signature of broken effective time-reversal symmetry



IV.  Graphene in a Superlattice Potential

Ripples in graphene: possibility of periodic modulations?
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Dirac equation for a single valley and spin,
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σx,y , Pauli matrices
I: identity
[H,∑y]=0 fl ky is a good quantum number, eikyy

Wave function has 2 components  (2 sublattices that make up the honeycomb lattice).

One-dimensional periodic potential:
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What happens if we continue to increase V0? Does the velocity go to zero?
What signature can be seen in transport?



Band structure obtained
by diagonalizing the Hamiltonian 

expanded in plane waves. 

Emerging zeros energy states:
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11' HUUH +=Unitary transformation (Park et al. , 2008)

• Pert theory explains group velocity near
original Dirac point

• Results depend on V0/G0
• Does not explain emergent zero modes
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tx →−= ,2 αχχ    Writing 

0sin2 =+∂−∂− χαχ ytt k

Mechanical analog

Eq. of motion for position  χ of an overdamped particle, subject
to a periodic time dependent potential ∂tα and a spatially periodic  
force 2kysinχ.
Generic solution is not periodic.  However for certain parameters periodic
solutions can be found.
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K++= )2(2)1( χχχ yy kk

( )
∑ −−

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

odd,
21

000

2

0
21

2121
/2

/2

ll
llll

Fy

llJJJ
GvVJ

G
k h

Solve perturbatively in ky :

Get a new zero mode every 
time J0 passes through zero!

Find:



Zero modes are Dirac points
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Evaluated in the lowest 
positive energy band.
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Also: In magnetic field,
new Dirac points lead to

enhanced Hall conductivity
(Park et al., ArXive:0903.3091)



V. Summary

• Mesoscopic transport in graphene support diverse phenomena
• Graphene armchair ribbons: chiral transport in lowest subband

when metallic
• Junctions may be perfect transmitters but introduce phase jumps

which act like effective flux wrapped around ribbon
• Different possible interference effects in transport through polygons
• Graphene rings have spectra which reflect 

“effective time-reversal symmetry breaking”
• Two-dimensional graphene in periodic potential support

• anisotropic Dirac point
• emerging Dirac points at large V0/G0
• signatures in transport of their emergence

Refs:       A.P. Iyengar, T. Luo, HAF, L. Brey PRB 78, 235411 (2008)
L. Brey and HAF, PRL (to appear – ArXive:0904.0540)
T. Luo, A.P. Iyengar, HAF, L. Brey (ArXive:0907.3150)


