Ribbons, rings and rough cavities: mesoscopic effects in transport through graphene structures

Klaus Richter

Universität Regensburg

Mesoscopic effects in graphene ...

Mesoscopic signatures

in phase coherent ...

... diffusive systems

R.A. Webb et al, PRL 1985

... ballistic systems

Chang et al. (1994)

- ⇒ Aharonov-Bohm effect
- \Rightarrow (universal) conductance fluctuations
- \Rightarrow weak localization

Outline:

mesoscopic effects in graphene-based nanostructures:

- transport formalism
- Aharonov-Bohm effect in graphene rings
- symmetry classes of graphene quantum dots: spectral statistics and weak localization
- transport through zigzag nanoribbons: spin injection and spin conductance fluctuations

interplay of edge and interference effects

Tight-binding model for graphene

→ tight-binding model

$$U_i = \begin{cases} V_i + M_i & \text{for } i \text{ in sublattice A} \\ V_i - M_i & \text{for } i \text{ in sublattice B} \end{cases}$$

V: potential, M: staggered potential

Green function formalism for transport

Conductance:

$$G = (e^{2}/h) \mathcal{T} \text{ with}$$

$$\mathcal{T} = \sum_{n=1}^{N'} \sum_{m=1}^{N} |t_{nm}|^{2} = \operatorname{Tr}(\Gamma_{l}G^{r}\Gamma_{l'}G^{a})$$

- retarded Green function:
- self-energies:
- coupling to lead l:

$$\Sigma^r = \sum_{\text{leads}} \Sigma_l^r$$

$$\Gamma_l = i(\Sigma_l^r - \Sigma_l^a)$$

 $G^r = (E - H_{scat} - \Sigma^r)^{-1}$

- use **recursive Green function techniques** within Landauer- and Keldysh-approaches
- matrix reordering strategies (graph-theoretical approaches)

M. Wimmer and KR, arXiv:0806.2739

Aharonov-Bohm effect in graphene

Aharonov-Bohm effect: experiments

• transport in coherent, dirty regime

AB-effect in a side-gated ring

 $\Rightarrow L_{\phi} = 1 \mu \text{m at } T = 0.5 \text{ K}$

F. Molitor et al., arXiv 0904.1364 (2009)

increased AB-oscillations at high *B*-field

S. Russo et al., Phys. Rev. B (2008)

Aharonov-Bohm effect: experiments

• transport in coherent, dirty regime

AB-effect in a side-gated ring

 $\Rightarrow L_{\phi} = 1 \mu \mathsf{m} \mathsf{ at } T = 0.5 \mathsf{ K}$

F. Molitor et al., arXiv 0904.1364 (2009)

Theory?

- Rycerz, Acta Phys. Polonica (2009): valley polarization in few-mode regime
- Recher et al., Phys. Rev. B (2007): closed rings with effective mass boundary condition
- Luo et al. arXiv0907.3150 (2009): effective TRS breaking in armchair rings

increased AB-oscillations at high *B*-field

S. Russo et al., Phys. Rev. B (2008)

Aharonov-Bohm effect: theory

magneto conductance of large **ballistic** rings

geometry:

parameters:

radius: $R \simeq 55$ nm ring width: $w_r \simeq 18$ nm lead width: $w_l \simeq 14$ nm

 $ightarrow~ \sim 10^5$ atoms

J. Wurm, M. Wimmer, H.U. Baranger, KR, Semicond. Sci. Techn. (2009)

Aharonov-Bohm effect: theory

magneto conductance of large **ballistic** rings

parameters:

radius: $R \simeq 55$ nm ring width: $w_r \simeq 18$ nm lead width: $w_l \simeq 14$ nm

 $ightarrow~ 10^5$ atoms

J. Wurm, M. Wimmer, H.U. Baranger, KR, Semicond. Sci. Techn. (2009)

AB effect: large-B signal

Russo-experiment: increase of AB oscillations at ~ 3 Tesla: $w_r \geq 2r_{cyc}$

numerics:

 \Rightarrow no peculiar features in the numerical AB signal at $w_r \simeq 2r_{
m cyc}$

AB effect: disordered rings

Russo-experiment: strongly disordered regime

⇒ regimes of clean AB signal and aperiodic oscillations (due to resonant tunneling at disordered edges)

AB rings: graphene-specific effects

Conductance suppression

AB ring with:

- metallic and semiconducting armchair regions in different arms
- semiconducting armchair regions in both arms ⇒ conductance suppression

 \Rightarrow effective barriers in bended graphene ribbons

J. Wurm, M. Wimmer, I. Adagideli, KR, H.U. Baranger, arXiv (2009)

AB rings: graphene-specific effects

Conductance suppression

AB ring with:

- metallic and semiconducting armchair regions in different arms
- semiconducting armchair regions in both arms ⇒ conductance suppression

- \Rightarrow effective barriers in bended graphene ribbons
- breaking the valley degeneracy in AB rings with mass confinement

J. Wurm, M. Wimmer, I. Adagideli, KR, H.U. Baranger, arXiv (2009)

spectral statistics and weak localization in graphene quantum dots

Coulomb blockade experiments in graphene

- experiments in tunable graphene quantum dots show:
 - Coulomb oscillations
 - Coulomb diamonds
- "large" dots \rightarrow equidistant peaks ($D \approx 250 \ nm$)

"Chaotic Dirac Billiard in Graphene Quantum Dots" Ponomarenko *et. al, Science* **320**, 356 (2008)

see also related work: Stampfer *et. al, APL* **92**, 012102 (2008), *Nano Lett.* **8**, 2378 (2008)

Coulomb blockade experiments in graphene

• Small samples (size $D \lesssim 100 \ nm$)

 \rightarrow size quantization \rightarrow non-periodic peaks

Coulomb blockade experiments in graphene

• Small samples (size $D \lesssim 100 \ nm$)

→ size quantization → non-periodic peaks

Wigner distribution of nearest neighbor peak spacings
 → level repulsion, signature of quantum chaos !

• Unitary statistics (GUE) \rightarrow **TRS broken** at B = 0 ?

Symmetry Classes and Random Matrix Theory

- consider quantum system with chaotic classical dynamics
- conjecture: Random Matrix Theory (RMT) applicable
 → universal predictions for energy level (distributions) and transport (scattering) properties
- depending on time reversal symmetry (TRS) property, Hamiltonian *H* and scattering matrix *S* belong to different RMT ensembles:

• orthogonal ensembles: e.g. $H^T = H$ (real symmetric) unitary ensemble: e.g. $H^{\dagger} = H$ (Hermitian)

Time reversal symmetries for graphene

Graphene hamiltonian with mass term

$$H_{\text{eff}} = v_F \pi_x \sigma_x \otimes \tau_z + v_F \pi_y \sigma_y \otimes \tau_0 + v_F^2 m(x, y) \sigma_z \otimes \tau_0$$
$$= v_F \begin{pmatrix} \vec{\sigma} \cdot \vec{\pi} & 0\\ 0 & -\vec{\sigma^*} \cdot \vec{\pi} \end{pmatrix} + v_F^2 m(x, y) \sigma_z \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$

- (special) time reversal symmetries : Suzuura, Ando, PRL (2002); McCann et al. PRL (2006); Ostrovsky et al. Eur. Phys. J. (2007)
 - conventional: $[\mathcal{T}, H_{\text{eff}}] = 0$
 - $T^2 = 1$

► special: $T_{sl} = -i(\sigma_y \otimes \tau_0)C$ $T_v = -i(\sigma_0 \otimes \tau_y)C$ ► $T_{sl/v}^2 = -1$

- m(x,y): breaks only T_{sl}
- magnetic field B: breaks T, T_{sl}, T_v

Graphene: boundary effects

intervalley scattering in graphene nanostructures

 armchair edges: contributions from both valleys are mixed

- zigzag edges: valleys form two disconnected subsystems
- \rightarrow intervalley scattering expected in graphene nanostructure
- \rightarrow mass confinement can suppress intervalley scattering

Predictions of Random Matrix Theory

• strong intervalley scattering (abrupt lattice termination):

$$\begin{array}{c|c} & H \\ \hline B = 0 & GOE \\ B \neq 0 & GUE \\ \end{array}$$

Predictions of Random Matrix Theory

• strong intervalley scattering (abrupt lattice termination):

$$\begin{array}{c} H \\ B = 0 & GOE \\ B \neq 0 & GUE \end{array}$$

• no intervalley scattering (mass confinement):

$$B = 0 \quad \begin{pmatrix} GUE & 0 \\ 0 & GUE \end{pmatrix}$$
$$B \neq 0 \quad \begin{pmatrix} GUE^{(1)} & 0 \\ 0 & GUE^{(2)} \end{pmatrix}$$

GUE at B = 0 expected (see Berry, Mondragon, Proc. R. Soc. London A (1987))

Spectral statistics of closed graphene dots

"Africa billiard": prototype of a chaotic quantum system

quadratically increasing mass term

 $m(x,y) \sim (\delta(x,y) - W)^2$

- calculate the density of states
- count number of adjacent levels with energy difference ΔE
- unfold the spectrum: get normalized distribution P(S) with $S = \Delta E / \langle \Delta E \rangle$

Nearest-neighbor statistics

why **Poissonian statistics** for the small billiard with $m \neq 0$?

- localized states at zigzag type boundaries
- dominant for small enough systems

(see also De Raedt and Katsnelson (2008))

Nearest-neighbor statistics

why **Poissonian statistics** for the small billiard with $m \neq 0$?

- localized states at zigzag type boundaries
- dominant for small enough systems

(see also De Raedt and Katsnelson (2008))

More importantly:

why **GOE statistics** for the larger billiard with $m \neq 0$?

- residual intervalley scattering
- relevant timescale for spectral statistics in closed systems: Heisenberg time $\tau_H = \frac{\hbar}{\langle \Delta E \rangle} \gg \tau_{KK'}$
- \rightarrow intervalley scattering dominates: **no GUE expected**

Quantum transport in open graphene structures

 deformed half stadium (chaotic classical dynamics)

Quantum transport in open graphene structures

- deformed half stadium (chaotic classical dynamics)
- quadratically increasing mass term intervalley scattering suppressed !?

Weak localization in ballistic graphene structures

Calculation of the dimensionless conductance $T = \frac{h}{2e^2}G$

- classical conductance $T_{\rm cl} \approx M/2$
- shift in $\langle T \rangle$ indicates weak localization

Weak localization in ballistic graphene structures

Calculation of the dimensionless conductance $T = \frac{h}{2e^2}G$

- classical conductance $T_{\rm cl} \approx M/2$
- shift in (T) indicates weak localization

• m = 0: intervalley scattering \Rightarrow crossover: GOE \longrightarrow GUE

 Lorentzian line shape (expected from semiclassics)

Weak localization in ballistic graphene structures

Calculation of the dimensionless conductance $T = \frac{h}{2e^2}G$

- classical conductance $T_{\rm cl} \approx M/2$
- shift in (T) indicates weak localization

• m = 0: intervalley scattering \Rightarrow crossover: GOE \longrightarrow GUE

 Lorentzian line shape (expected from semiclassics)

• $m \neq 0$:

weak localization strongly suppressed for mass confinement !

symmetry classes: spectral vs. transport properties

for B = 0:

- open and closed graphene systems with abrupt termination: GOE behavior
- **2 transport** through open dots with smooth mass confinement: $\tau_{esc} < \tau_{KK'} \longrightarrow \text{GUE}$ behavior for (WL and UCFs)
- **3** spectral statistics of closed dots with smooth mass confinement: $\tau_{\rm H} > \tau_{KK'} \longrightarrow$ GOE behavior

\Rightarrow does not agree with experimental conclusions: GUE

J. Wurm, A. Rycerz, I. Adagideli, M. Wimmer, KR, H.U. Baranger, Phys. Rev. Lett. (2009)

Spin currents and mesoscopic spin conductance fluctuations in nanoribbons

Spins in graphene

- small intrinsic spin-orbit coupling
 - \Rightarrow long spin lifetimes expected
 - \Rightarrow graphene as prospective material for spin electronics
- successful spin injection from ferromagnetic contacts into graphene Hill et al., Trans. Magn. (2006); Oishi et al., Jpn. J. Appl. Phys. (2007); Tombros et al., Nature (2007):

how to generate spin currents in graphene without ferromagnets?
 > zigzag nanoribbons

edge magnetism in zigzag nanoribbons

 Zigzag graphene nanoribbons: existence of a localized state at the edges

(see eg. Fujita, Wakabayashi, Nakada, Kusakabe (1996); Ezawa (2006); Peres, Guniea, Castro-Neto (2006); Brey and Fertig (2006); ...)

experimental observation:

(eg. Kobayashi et al. Phys. Rev B (2006); Niimi et al. Phys. Rev. B (2006); see also: Ritter and Lyding, Nature Mat. (2009))

Edge magnetism in zigzag nanoribbons

Zigzag graphene nanoribbons: flat-band \Rightarrow high density of states \Rightarrow magnetism of the edge state

Fujita et al., JPSJ (1996) (mean field Hubbard model)

S. Okada and A. Oshiyama, Phys. Rev. Lett. (2001) (DFT)

Y.-W. Son et al., Nature (2007) (DFT)

- edge magnetization within each sublattice A and B
- ground state: opposite magnetization of A and B edge states
- staggered magnetization

Edge magnetism in zigzag nanoribbons

Zigzag graphene nanoribbons: flat-band \Rightarrow high density of states \Rightarrow magnetism of the edge state

Fujita et al., JPSJ (1996) (mean field Hubbard model)

S. Okada and A. Oshiyama, Phys. Rev. Lett. (2001) (DFT)

Y.-W. Son et al., Nature (2007) (DFT)

- edge magnetization within each sublattice A and B
- ground state: opposite magnetization of A and B edge states
- staggered magnetization

Edge magnetism in zigzag nanoribbons

Zigzag graphene nanoribbons: flat-band \Rightarrow high density of states \Rightarrow magnetism of the edge state

Fujita et al., JPSJ (1996) (mean field Hubbard model)

S. Okada and A. Oshiyama, Phys. Rev. Lett. (2001) (DFT)

Y.-W. Son et al., Nature (2007) (DFT)

- edge magnetization within each sublattice A and B
- ground state: opposite magnetization of A and B edge states
- staggered magnetization

Modelling edge state magnetism

staggered magnetization of edge state:

$$H_{\text{mag}} = \begin{cases} \mathbf{M} \cdot \mathbf{s} & \text{on sublattice A} \\ -\mathbf{M} \cdot \mathbf{s} & \text{on sublattice B} \end{cases}$$

• fit magnetization to DFT calculations:

Spin transport at the edges

- magnetic edge states are strongly localized at the edges
- transport mediated through edge states nnn-coupling in tight-binding Hamiltonian essential !
- → two-wire mechanism of spin transport in graphene ribbon:

→ break up-down symmetry to achieve spin conductance !

(alternative proposal: Son et al. Nature (2007))

Spin injection in graphene

→ spin Hall type effect

M. Wimmer, I. Adagideli, S. Berber, D. Tomanek, KR, Phys. Rev. Lett. (2009)

Mesoscopic effects in graphene ...

Spin injection in graphene

→ net spin conductance !

M. Wimmer, I. Adagideli, S. Berber, D. Tomanek, KR, Phys. Rev. Lett. (2009)

Mesoscopic effects in graphene ...

Ribbons with rough edges

more realistic in today's experiments: rough edges:

Spin conductance:
$$G_s = G_{\uparrow} - G_{\downarrow}$$

If $R_1 = R_2$, $\langle G_s \rangle = 0$. However: mesoscopic conductance fluctuations!

Spin conductance fluctuations:

$$\operatorname{Var} G_{\mathrm{s}} = \operatorname{Var} G_{\uparrow} + \operatorname{Var} G_{\downarrow} = \operatorname{Var} G_{\mathrm{tot}}$$

$$rms G_{\rm s} = \sqrt{\operatorname{Var} G_{\rm s}} = rms G_{\rm tot}$$

Mesoscopic effects in graphene ...

Spin conductance fluctuations

Disordered graphene nanoribbon: averaged properties

Spin conductance fluctuations

Disordered graphene nanoribbon: single ribbon

Spin conductance fluctuations

typical spin density in a disordered graphene nanoribbon:

corresponding spin current density

Universality of spin conductance fluctuations

different disorder models:

- fluctuations are universal (independent of type of disorder)
- correspond to transmission statistics through 1d disordered chain
 O. N. Dorokhov, JETP Lett. (1982); P. A. Mello *et al.*; Ann. Phys. (NY) (1988).

Thanks to ...

- Michael Wimmer (Leiden)
- Jürgen Wurm (Regensburg)
- Inanc Adagideli (Istanbul)
- Adam Rycerz (Regensburg / Krakow)
- Harold Baranger (Duke Univ.)
- Savas Berber (Istanbul)
- David Tomanek (East Lansing)

thanks to the German Science foundation (DFG) and Alexander von Humboldt foundation

All-electrical detection of edge magnetism

Up to now: No direct experimental proof for edge magnetism

→ Measuring the spin conductance G_s of a nanoribbon would yield conclusive evidence for edge magnetism.

Universal Conductance Fluctuations

- COE → CUE transition for systems with rough egdes (as in 2DEG billiards)
- 4 CUE → 2 CUE transition for systems with smooth mass boundary

• strong intervalley scattering (no mass, $\tau_{KK'} \ll \tau_{esc}$)

	S	WL	CF
B = 0	COE_{2M}	yes	var(COE)
$B \neq 0$	CUE_{2M}	no	var(CUE)

• strong intervalley scattering (no mass, $\tau_{KK'} \ll \tau_{esc}$)

		S	WL	CF
·	B = 0	COE_{2M}	yes	var(COE)
	$B \neq 0$	CUE_{2M}	no	var(CUE)

• no intervalley scattering (mass confinement, $\tau_{KK'} \gg \tau_{esc}$)

	S		WL	CF
B = 0	$\left(\begin{array}{c} CUE_M\\ 0\end{array}\right)$	$\begin{pmatrix} 0\\ CUE_M \end{pmatrix}$	no	4var (CUE)
$B \neq 0$	$ \left(\begin{array}{c} CUE_M^{(1)} \\ 0 \end{array}\right) $	$\begin{pmatrix} 0 \\ CUE_M^{(2)} \end{pmatrix}$	no	2var (CUE)