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Abstract
We study Andreev reflection in graphene nanoribbon/superconductor

hybrid junctions. By using a tight-binding approach and the scattering
formalism we show that finite-size effects lead to notable differences with
respect to the bulk graphene case [1]. Conservation of pseudoparity,
a quantum number characterizing the ribbon states, yields at subgap
voltages either a suppression of Andreev reflection when the ribbon has
an even number of sites in the transverse direction or perfect Andreev
reflection when the ribbon has an odd number of sites [2]. In the
former case the suppression of Andreev reflection induces an insulating
behavior even when the junction is biased; electron conduction can
however be restored by applying a gate voltage.

      What is Andreev Reflection?    1

                      

Fig.1 Schematic represen-
tation of Andreev (Retro-)
Reflection at the interface
between a Metal (left) and a
Superconductor (right).

Andreev Reflection (AR) [3]: electron → hole conversion at the
interface between a normal metal and a superconductor (electron 1 into
hole 3 in Fig. 2). The missing charge of 2e enters the superconductor
as a Cooper pair in the ground state (labeled 4 in Fig. 2).

Fig.2 Left: dispersion relation of electron-like (solid line) and hole-like (dotted line) excitations in
the metal region. Right: dispersion relation in the superconducting region; for energies lower than
the gap |∆| no excitations are available, and one can transfer charge only by injecting Cooper pairs.

• At energies below the superconducting gap, E < |∆|, Andreev
reflection is the only process that contributes to the conductance G
of the interface, since normal transmission of electrons is prohibited
(no excitation states available in the superconductor side). For
every Andreev process a charge of 2e is transmitted, thus we have
G ∝ 2RA (RA is the Andreev reflection coefficient).

• At energies E > |∆| normal transmission becomes possible (elec-
tron 5 in Fig. 2), so that the conductance has two contributions.
Actually, normal transmission of electrons is favorite on Andreev
reflection, and the Andreev reflection coefficient drops rapidly to
zero with increasing energies.
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Graphene [4] is a flat monolayer of Carbon
atoms arranged in a two-dimensional (2D)
honeycomb lattice. Since the honeycomb
lattice is a non-Bravais lattice, a sublattice
degree-of-freedom has to be introduced: it is
termed pseudospin and its two components
refer to the A or B sublattices.

There are six points in k-space where valence and conduction bands
touch each other, but because of symmetry considerations, it is sufficient
to consider only two of these points, which are called valleys. At each
valley, graphene’s dispersion relation at low energies has a conical
structure, that is, the energy-momentum relation is linear, and thus
electronic excitations behave as massless (chiral) particles.
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It has been shown [1] that the peculiar band structure of graphene

gives rise to the appearance of specular Andreev reflection, a novel
type of AR that is absent in ordinary metal/SC interfaces. By moving
the Fermi level it is possible to choose the reflected hole to be in the
valence band or in the conduction band, and to switch from the regime
of ordinary AR to the one of specular AR.

Fig.3 Specular Andreev reection (right panel) happens if an electron in the conduction band is
converted into a hole in the valence band. In the usual case (left panel), instead, electron and hole
both lie in the conduction band. The momentum k of the hole is fixed by conservation laws, but
the velocity (∝ ∂E/∂k) of the hole is opposite in the two cases. Figures taken from [1].

         

Most of the theoretical analysis car-
ried out so far in literature describe
the graphene sheet as an infinite (or
semi-infinite) 2D plane, and identify
two energy scales relevant for trans-
port, namely the superconducting
gap ∆0 = |∆| and the displacement
EF of the Fermi level from the Dirac
level (the energy at which valence and
conduction bands touch each other).

In graphene nanoribbons (GNRs), however, the finite size W of the
sample yields an additional energy scale δ ∝ W−1, characterizing the
mean energy spacing between the ribbon sub-bands. We have

W = 10 nm÷ 1 µm ⇒ δ = 3 meV ÷ 300 meV

and thus δ is larger than (or of the same order of) the typical supercon-
ducting gap ∆0 ! 1 meV. As a consequence, δ is expected to play an
important role in electron transport and AR in graphene.
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We consider the case of a ribbon with zigzag edges, which has been

shown to represent fairly well the behavior of an arbitrarily shaped edge.
We model the GNR by means of the tight-binding Hamiltonian

Ĥ = −γ
∑

〈i,j〉

ĉ†i ĉj + U
∑

i

ĉ†i ĉi , (1)

where γ " 2.8 eV is the hopping energy between nearest-neighbor
sites 〈i, j〉 on the honeycomb lattice, and U accounts for a constant
electrostatic energy, which can be controlled by a gate voltage.

We find that the eigenfunctions of the Hamiltonian (1) which obey to the
appropriate boundary conditions are of the form:

ΨA(B)(x, y) = eikx xA(B)(x) ·
(

sin[ky(W/2 + y)]
η sin[ky(W/2− y)]

)
, (2)

where xA(B)(x) is the coordinate of the A(B) site of the unit cell located at
(x, y) and W is the width of the ribbon. We see that Ψ is made up by:

• A plane-wave factor along the longitudinal direction x̂, which comes from
translational invariance and is labeled by the quantum number kx ;

• A spinor
„

ΦA

ΦB

«
along the transverse direction ŷ, which turns out to be

labeled by a quantum number η = ±1, termed pseudoparity, that tells
us whether the transverse “average” wave function (ΦA + ΦB)/2 is even
or odd with respect to the ribbon center y = 0. The quantum number ky

labeling the transverse modes is related to kx through the tight-binding
equations and the boundary conditions.

Thus, because of the boundary conditions, the eigenstates of finite-size
nanoribbons are labeled by the pseudoparity rather than by the pseudospin .
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Fig.4 For the even NW case we find that:

• Electron or hole states at fixed valley and
sub-band have all the same pseudoparity;

• Electron states and hole states at the
same energy and momentum have oppo-
site pseudoparity;

• Pseudoparity values (±1) alternate from
one sub-band to the other;

• States at the same energy but from oppo-
site valleys have the same pseudoparity.

  

Fig.5 For odd NW we have instead that:

• States at the same energy but from oppo-
site valleys have opposite pseudoparity.

This difference between even and odd NW , to-
gether with a selection rule on pseudoparity
quantum number, is responsible for different
behaviors in the conductance for the two cases.

   Calculation of the Conductance  6

The coupling between electrons and holes in the superconductor is is
accounted for by the Bogoliubov-de Gennes Hamiltonian, with pairing
amplitude ∆:

HBdG =
(
H−EF ∆

∆∗ EF −H∗

)
, (3)

where H is the particle Hamiltonian (1), and EF gives the position of
the Fermi level in the superconducting region.

We then obtain the Hamiltonian of the whole junction through the
Dyson’s equation, and by means of appropriate Green’s functions we
calculate the probability for all different processes that can take place in
the junction (e.g. the reflection coefficient R and the Andreev reflection
coefficient RA).

Finally, the zero-temperature differential conductance is given by

G(V ) =
4e2

h
[N(V )−R(V ) + RA(V )] , (4)

where V is the bias voltage applied across the junction. The prefactor 4
is due to spin and valley degeneracies, whereas N(V ) is the number of
transverse propagating modes (“open channels”) available at energy eV
measured from the Fermi level EF.               
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Fig.6 Conductance G (red) and Andreev Reflection coefficient RA (green) for the GNR-SC
junction as a function of the applied bias potential. We have considered here the realistic case
W ! 50 nm, for which δ ! 52 meV " ∆0. Left: for the undoped case (EF = 0, Fermi level at
the Dirac point) we observe opposite behaviors for the even NW case (above) and the odd NW

case (below). In the former case, Andreev reflection and thus conductance at subgap voltages are
suppressed to zero because of pseudospin conservation. RA remains zero until eV = δ, where new
channels open up, while G becomes finite at eV = ∆0, when transmission becomes possible. In
the odd case instead, Andreev reflection is allowed by pseudospin conservation and thus we get
RA = 1 and G = 2 (in units of 4e2/h) below the gap. Right: by applying a gate voltage U one
can shift rigidly the electron and hole dispersion relations and restore a finite RA for the even case
in an energy window [0 : U ]. In the odd case we don’t obtain any substantial modification (below).

By looking at the pseudoparity configuration within the ribbon bands of Figg. 4
and 5, one can explain the observed behaviors of Fig. 6.

• Let’s consider a right-propagating electron, indicated in Fig. 4 by label 1,
incoming from the GNR region. It can be scattered into a left-propagating
electron or into a left-propagating hole, labeled by 2. Since the pairing am-
plitude is constant along the transverse direction, it cannot couple states
with different pseudoparity (i.e. the pseudoparity of an electron imping-
ing onto the interface cannot be flipped). Thus, electron 1 can only be
scattered into an outgoing left-propagating electron, that is, normal reflec-
tion takes place while Andreev reflection is forbidden. Instead, at energies
larger than δ, for an incoming electron, say 3, there are also available hole
states with the same pseudoparity (4 or 6): Andreev reflection is possible.

• In the odd NW case (Fig. 5), thanks to the different pseudoparity configu-
ration, the incoming electron 1 can only be scattered into the hole 2, that
is, Andreev reflection process is allowed and takes place with probability
1. At higher energies the situation is similar, because for an electron of
given pseudoparity there is always a counter-propagating hole with the
same pseudoparity.

CONCLUSIONS

In summary, we have studied Andreev reflection in graphene nanoribbon/superconductor
hybrid junctions. We have reported analytical expressions for the eigenfunctions of the
tight-binding Hamiltonian describing the graphene ribbon, which are valid at arbitrary
energy and carry explicitly a definite pseudoparity. The selection rule stemming from this
quantum number has strong implications on transport through the junction.

For nanoribbons with an even number of sites in the transverse direction we have
found a complete suppression of Andreev reflection in a wide range of energies when the
Fermi energy lies at the Dirac level. This implies zero conductance at subgap voltages,
but it can however be restored by applying a finite gate potential, opening up potential
technological applications of these hybrid junctions as electron transistors as well as nanore-
frigerators. In contrast, in the case of ribbons with an odd number of sites we have found
perfect Andreev reflection at subgap voltages and an abrupt suppression of it above the gap.

The study of non-ideal edges, realistic interfaces, and bulk disorder is postponed to a
future publication. The role of electron-electron interactions and/or next nearest-neighbor
hopping, which also has not been addressed here, can be qualitatively understood as follows:
these effects have been shown to lead to the opening of a gap ∆g at the Dirac level, which is
however typically much smaller than δ. Our conclusions thus remain valid for a large range
of energies even when these effects are taken into account.
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