Quantum Hall Effect and Electron-electron interaction in graphene

Philip Kim

Department of Physics Columbia University

Outlines

• Review of graphene Quantum Hall effect

- * Non-interacting picture
- * Interaction mediated SU (4) symmetry breaking of zero LL
- Bulk gap measurements
 - * IR Spectroscopy
 - * Transport measurement using Corbino geometry
- SU(8) Symmetry breaking in bilayer graphene sample
- Fractional Quantum Hall Effect in Suspended Graphene

Quatum Hall Effect in Graphene (2005)

Vol 438 10 November 2005 doi:10.1038/nature04233

nature

LETTERS

Two-dimensional gas of massless Dirac fermions in graphene

K. S. Novoselov¹, A. K. Geim¹, S. V. Morozov², D. Jiang¹, M. I. Katsnelson³, I. V. Grigorieva¹, S. V. Dubonos² & A. A. Firsov²

nature

LETTERS

Experimental observation of the quantum Hall effect and Berry's phase in graphene

Yuanbo Zhang¹, Yan-Wen Tan¹, Horst L. Stormer^{1,2} & Philip Kim^1

Graphene Landau Level and Half Integer QHE

I. I. Rabi, Z. Phys. 49, 507 (1928); McClure, Phys Rev. (1957), Haldane, Phys. Rev. Lett. (1988)

Landau Level Degeneracy $g_s = 4$ 2 for spin and 2 for sublattice

Quantized Condition $R_{xy}^{-1} = \pm g_s \left(n + \frac{1}{2}\right) \frac{e^2}{h}$

$$v = \pm g_s(n+1/2)$$

LL filing factor

T. Ando et al (2002)

```
E_1 \sim 300 \text{K} [\text{B}(\text{T})]^{1/2}
```

Room Temperature Quantum Hall Effect

What is the role of electron-electron interaction in graphene?

Splitting of Landau Levels in High Magnetic Fields

Low fields (B < 10 T)

 $v = \pm 2, \pm 6, \pm 10, \dots$

High fields (B > 20 T) v = 0, ±1, ±2, ±4, ±6, ...

Spin & valley symmetry lifted!

How to break sub-lattice symmetry?

SU(4) Symmetry: spin/pseudo spin

<u>Spontaneous Symmetry Breaking</u> Charge density wave, Spin density wave, Skyrmions, excitons, and etc

Theory Reference list (partial)

- [13] K. Nomura, A.H. MacDonald, Phys. Rev. Lett. 96 (2006) 256602.
- [14] M.O. Goerbig, R. Moessner, B. Doucot, Phys. Rev. B 74 (2006) 161407.
- [15] J. Alicea, M.P.A. Fisher, Phys. Rev. B 74 (2006) 075422.
- [16] Kun Yang, S. Das Sarma, A.H. MacDonald, Phys. Rev. B 74 (2006) 075423.
- [17] Dmitry A. Abanin, Patrick A. Lee, Leonid S. Levitov. cond-mat/0611062.
- [18] V.P. Gusynin, V.A. Miransky, S.G. Sharapov, I.A. Shovkovy, Phys. Rev. B 74 (2006) 195429.
- [19] V.P. Gusynin, V.A. Miransky, S.G. Sharapov, I.A. Shovkovy. cond-mat/ 0612488.
- [20] I.F. Herbut, Phys. Rev. B 75 (2007) 165411.
- [21] M. Ezawa, cond-mat/0609612; cond-mat/0606084.
- [22] D.V. Khveshchenko, Phys. Rev. Lett. 87 (2001) 206401.
- [23] Jean-Noöl Fuchs, Pascal Lederer, Phys. Rev. Lett. 98 (2007) 016803; cond-mat/0612386.

Quantum Hall Insulator OR Quantum Hall Ferromagnet?

Normura & Macdonald, PRL 96, 256602 (2006); Abanin, Lee, & Levitov, PRL 98, 156801 (2007);

Quantum Hall Ferromaget!

Activation Energy Gap Measurements

Zhang, et al, PRL (2007)

Graphene QH Edge States for Quantum Hall Ferromagnet

We expect metallic states all gate voltages!

Abanin, et al., Phys. Rev. Lett. 98, 196806 (2007)

Resistance Maximum for v = 0 **Quantum Hall State**

Abanin, et al., Phys. Rev. Lett. 98, 196806 (2007)

Metallic temperature behavior $\rho_{xx} < 40 \text{ k}\Omega @ 30 \text{ T}$

J. Chekelsky, L. Li, N. P. Ong, PRL (2007) PRB (2008)

Insulator like behaviors for clean samples at high magnetic field 30 T.

Probing the Nature of v=0 QH state : Energy Gap

Transport Gap Measurement at the Dirac Point

Quantum Hall Effect in Graphene Corbino Device

Transport Gap in $\nu = 0$ state

Similar to J. Chekelsky, L. Li, N. P. Ong, PRL (2007) PRB (2008)

Degeneracy Lifting: Spin or Pseudo Spin?

v =0 Quantum Hall Splitting: Tilting Angle Adjustment

Brief History of LL Symmetry Breaking Hierarchy

Energy Gap Measurement: Cyclotron Resonance

Landau Level Spectroscopy with IR Measurement

Measuring energy between R. S. Deacon, K.-C. Chuang, R. J. Nicholas, K. S. Novoselov, and A. K. Geim, Phys. Rev. B 76, 081406(R) (2007). Z. Jiang, E. A. Henriksen, L.-C. Tung, Y.-J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, and H. I LL centers in bulk

Stormer, Phys. Rev. Lett. 98, 197403 (2007).

E. A. Henriksen, Z. Jiang, L.-C. Tung, M. E. Schwartz, M. Takita, Y.-J. Wang, P. Kim, and H.

Stormer, Phys. Rev. Lett 100, 087403 (2008).

M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, Phys. Rev. Lett. 97, 26640.

(2006).

$\nu = 0$ Gap Measurement by IR Spectroscopy

$$\hbar w_{\nu=0} - \hbar w_{\nu=2} = \frac{1}{2} \Delta E_{n=0}$$

Energy Gap at Dirac Point ~ 300K @ 31 T

Symmetry Breaking of $\nu = 0$ QH state in Bilayer graphene

Nature of Symmetry Breaking

Quantum Hall Effect in Suspended Graphene

Fractional Quantum Hall State in graphene

Landau Fan Diagram : additional FQH states (?)

Insulating State at v = 0**: Size of Gap**

Summary

Symmetry breaking of zero energy LL in 'bulk' graphene SU(4) symmetry breaking hierarchy Pseudo Spin (v = 0); Spin –manybody enhanced (v = +/-1) Insulating bulk state at high magnetic field

<u>IR gap Measurement</u> Magnetic field dependent 'Bulk Gap' v = 0 QH state

<u>SU(8)</u> Symmetry breaking in bilayer graphene sample Spin degeneracy lifting at the charge neutrality point

<u>Fractional Quantum Hall Effect in Suspended Graphene</u> v = 1/3 FQH state observed Potential other FQH states 1/3 < v < 1Large gap in the insulating state at v = 0

Acknowledgement

High magnetic field transport/ Suspended graphene

IR Measurements

Yuanbo Zhang (now at Berkeley)

Erik Henriksen (now at Caltech)

Kirill Bolotin

112

Zhigang Jiang (now at GA Tech)

Horst Stormer

Paul Cadden-Zimansky

Corbino/ Bilayer

Funding:

