

Quantum Interference Effects in Graphene Alex Savchenko

- Weak Localisation in Mono-layer and Bi-layer graphene.
- Transition from WL to AWL in graphene.
- UCF in graphene.

F.V. Tikhonenko

D.W.Horsell

A.A. Kozikov

R.V. Gorbachev

Funding:

Quantum interference in conductance

AWL is usually due to strong *s-o* scattering

Size of trajectories is limited by $\tau_{\phi}(T)$.

Quantum interference in conductance

Quantum interference in conductance

Carriers in graphene and bi-layer

Massless

Massive

Two valleys with

Chiral carriers:

Berry phase π Berry phase 2π

Trigonal warping of energy spectrum (stronger in bi-layer).

Quantum Interference in graphene

Sensitivity to *elastic* scattering:

- Intra-valley scattering by topological defects
 - breaking chirality, τ_t , Morpurgo, Guinea, PRL (2006)
- Intra-valley scattering in the presence of McCann et al., PRL (2006) trigonal warping, τ_{w} .

Such scattering, τ_*^{-1} , *destroys* quantum interference in one valley.

Inter-valley scattering by sharp defects, τ_i^{-1} .

Inter-valley scattering *restores* interference destroyed in one valley and results in WL.

Theory of WL in graphene layers

Tikhonenko, Horsell, Gorbachev, Savchenko, PRL 100, 056802 (2008)

AFM images

Magnetoconductance of graphene at different T

Tikhonenko, Horsell, Gorbachev, Savchenko, PRL 100, 056802 (2008)

L_{ϕ} as a function of T

B. L. Altshuler, A. G. Aronov and D. E. Khmelnitsky, J. Phys. C 15, 7367 (1982)

L_i and L^* in different *n* regions

- *τ_i* decreases with *n* (DOS increases with *E*).
- τ* decreases with n
 (warping increases with n?)

Estimations of
$$\tau_w^{-1} = 2\tau_p \left(\eta \varepsilon^2 / \hbar v_F^2\right)^2$$
, $\eta = \frac{\gamma_o a^2}{8\hbar^2}$:
 $\tau_w \approx 720 \,\mathrm{ps}$ for $\varepsilon_F = 30 \,\mathrm{meV}$
 $\tau_w \approx 2 \,\mathrm{ps}$ for $\varepsilon_F = 130 \,\mathrm{meV}$
Experiment: $\tau_w < 1 \,\mathrm{ps}$.

Strong intra-valley suppression of WL (small τ^*)

× Trigonal warping: McCann et al., PRL (2006) $\tau_w^{-1} \approx 2\tau_p \left(\mu \varepsilon_F^2 / \hbar v_F^2\right)^2$, where $\mu = \gamma_0 a^2 / \hbar^2$. \times Sharp defects breaking chirality, but $L_i >> L^*$! \times Dislocations: Marpurgo, Guinea, PRL (2006) $\tau_d^{-1} \approx v_F / k_F \xi^2$, where ξ is the distance between dislocations. \times Ripples: Morozov. et al. (2006). $B_{eff} \approx \frac{\gamma_o}{ev_F L_{\phi}} \left(\frac{h}{d}\right)^2$ \times Potential gradients: Marpurgo, Guinea, PRL (2006) $\tau_{grad}^{-1} \approx \tau_p^{-1} (k_F a)^2$

Origin of strong WL suppression in one valley ?

Tikhonenko et al., PRL 100, 056802 (2008) - Supplementary. Material

Bilayer sample

Gorbachev, Tikhonenko, Mayorov, Horsell, Savchenko, PRL 98, 176805 (2007)

Magnetoconductance of bilayer at different *T*

Gorbachev, Tikhonenko, Mayorov, Horsell, Savchenko, PRL 98, 176805 (2007)

Decoherence rate as a function of *T*

B. L. Altshuler, A. G. Aronov and D. E. Khmelnitsky, J. Phys. C., 15, 7367 (1982).

Saturation L_{ϕ} at different carrier densities

Smaller L_{ϕ} in the electro-neutrality region is due to *e*-*h* puddles, which are not totally transparent

Intra-valley suppression of WL in bilayer

AWL in graphene

Due to the Berry phase π , *destructive* interference occurs: AWL without strong *s-o* coupling.

Anti Weak Localisation in graphene

Its origin in conventional 2D systems: spin-orbit coupling and spin flip at scattering on impurities.

PHYSICAL REVIEW LETTERS 12 April 1982

Influence of Spin-Orbit Coupling on Weak Localization

Gerd Bergman

Magnetoconductance of graphene at different T

Tikhonenko, Horsell, Gorbachev, Savchenko, PRL 100, 056802 (2008)

PRL 98, 136801 (2007)

Weak Antilocalization in Epitaxial Graphene: Evidence for Chiral Electrons

Xiaosong Wu,¹ Xuebin Li,¹ Zhimin Song,¹ Claire Berger,^{1,2} and Walt A. de Heer¹

AWL: dR/dT > 0

AWL : Positive MC at small B

Experimental scattering times at different *n*

Tikhonenko, Kozikov, Savchenko, Gorbachev, arXiv: 0903.4489

Transition from WL to AWL

Dephasing rate τ_{ϕ}^{-1}

Electron-electron scattering in 'diffusive' regime, $T\tau_p < 1$:

$$\tau_{\phi}^{-1} = \alpha \frac{k_B T}{2E_F \tau_p} \ln \left(\frac{2E_F \tau_p}{\hbar} \right) \,.$$

Electron-phonon scattering :

$$\tau_{e-ph}^{-1} = \frac{1}{\hbar^3} \frac{E_F}{4V_F^2} \frac{D_a^2}{\rho_m V_{ph}^2} k_B T .$$

Stauber, Peres, Guinea, PRB (2007) Hwang, Das Sarma, PRB (2008)

Dephasing rate

in 'ballistic' regime, $T\tau_p > 1$:

 $\tau_{\phi}^{-1} = \beta \frac{\pi}{4} \frac{(k_B T)^2}{\hbar E_F} \ln \left(\frac{2E_F}{k_B T} \right) \,.$

Reproducible conductance fluctuations, UCF

 $\delta G \approx e^2/h$

Self-averaging of UCF is determined by two lengths: $L_{\phi}(T) = \sqrt{D \tau_{\phi}}$ - dephasing length; $L_T(T) = \sqrt{\frac{D\hbar}{k_B T}}$ - 'thermal' length'.

In 2D for $L_T < L_{\phi}$: $\langle \delta G^2 \rangle \approx (e^2/h)^2 (W/L) (L_T/L)^2$.

UCF in graphene

Theory:

Kharitonov, Efetov (2008) Kechedzhi, Kashuba, Falko (2008)

In addition to the usual lengths $L_{\phi} = \sqrt{D\tau_{\phi}}$ and $L_T = \sqrt{D\hbar/k_BT}$, fluctuations are sensitive to *elastic scattering*: length $L_i = \sqrt{D\tau_i}$ (*inter*-valley) and length $L^* = \sqrt{D\tau^*}$ (*intra*-valley).

If in a usual metal $\langle \delta G^2 \rangle = \mathcal{R}_1(T, B, L, W) (e^2/h)^2$,

in graphene $\langle \delta G^2 \rangle = \alpha \mathcal{R}_1(T, B, L, W) \ (e^2/h)^2$,

where α determines the number of 'channels':

$$\alpha = \begin{cases} 4 & \text{for } L_i, L^* > L_\phi ; \\ 2 & \text{for } L_i > L_\phi > L^* ; \\ 1 & \text{for } L_\phi > L_i . \end{cases} \qquad \qquad \text{AWL}$$

Note: contrary to *WL*, fluctuations *decrease* with increasing *inter*-valley scattering (*decreasing* L_i).

The normalised correlation function, however, depends only on electron temperature, T_e .

Kechedzhi, Horsell, Tikhonenko, Savchenko, Gorbachev, Lerner, Fal'ko, PRL (2009)

Experimental testing

Temperature dependence of variance

Parameters L_{ϕ} , L_i and L^* are found from experiments on WL.

Theory of conductance fluctuations amplitude gives $\alpha \sim 1$:

Kechedzhi, Horsell, Tikhonenko, Savchenko, Gorbachev, Lerner, Fal'ko, SSC (2009)

SUMMARY

- Weak localisation in graphene is sensitive to different *elastic* scattering mechanisms.
- By changing *n* and *T* one can achieve a transition from WL to AWL due to the Berry phase.
- Weak localisation in graphene exists at high *T*, with dephasing due to *e-e* interactions.
- UCF are also sensitive to *elastic* scattering, but the correlation function is only controlled by T_e .