Adsorbate-limited conductivity of graphene

Henning Schomerus (Lancaster)
Benasque, 4 August 2009
Outline

- Chemical disorder – experimental evidence

- Modelling

- Transport:
 - kinetic theory
 - quantum corrections
 - localization
Effects of pollution: experiments

• Shifted effective Dirac point
• Conductance asymmetric

[Solid State Communications 146, 351-355 (2008)]
Effects of pollution: experiments

Systematic current annealing

(data courtesy of Amelia Barreiro, Barcelona)
Selective adsorption (T. J. Echtermeyer et al. 2007)
Hydrogenated graphene

General considerations

Disorder in conventional conductors: Time reversal symmetry preserved / broken?

Graphene: Valley index preserved / broken? Chirality preserved / broken?

In particular:
Long ranged vs short-ranged
Coulomb vs defect scattering
Ionic vs chemisorbed adsorbates
Aim: Adsorbate-specific theory for chemisorption
Tight-binding description

\[H = v_0 (\xi k_x \sigma_x + k_y \sigma_y), \quad v_0 = \frac{3}{2} \gamma_0 a \]

Wallace 1946
Tight-binding description

\[
H_0 = -\gamma_0 \sum_{nm} c_m^+ c_n
\]

\[
H_i = \varepsilon_i d_i^+ d_i - \gamma_i [d_i^+ c_h + c_h^+ d_i]
\]

Parameters can be fit from DFT (here: Siesta)

\[\begin{align*}
H^+ & : \varepsilon_i = 0.66 \gamma_0, \quad \gamma_i = 2.2 \gamma_0 \\
\text{OH}^- & : \varepsilon_i = -2.90 \gamma_0, \quad \gamma_i = 2.3 \gamma_0
\end{align*}\]
outside the gap

in the gap
Scattering rate off a single adsorbate

Self energy (exact): \[H_i = \frac{\gamma_i^2}{E - \varepsilon_i} c_h^+ c_h \]

Green’s function (exact): \[G = G_0 + G_0 \frac{\gamma_i^2}{E - \varepsilon_i - g_0} P_i G_0 \]
\[g_0 = P_i G_0 P_i^T = R(E) - i\pi\nu_0(E) \]

Scattering rate (Fermi golden rule) \[\tau_k^{-1} = \frac{2\pi}{\hbar} \frac{1}{N} \nu_0 |t_i|^2 \]

Using dos on adsorbate \[\tau_k^{-1} = \frac{2\pi}{\hbar} \frac{1}{N} \nu_i \gamma_i^2 \]
Renormalisation of the resonance

\[
\tau_k^{-1} = \frac{2\pi}{\hbar} \frac{1}{N} \gamma_i \nu_i \gamma_i^2
\]

dos on adsorbate

\[
\frac{\gamma_i^2 \nu_0(E)}{[E - \epsilon_i - \gamma_i^2 R(E)]^2 + \pi \gamma_i^2 \nu_0(E)^2}
\]

Strong coupling: resonance \rightarrow Dirac point
Renormalisation of the resonance

\[
\tau_k^{-1} = \frac{2\pi}{\hbar} \frac{1}{N} \nu_i \gamma_i^2
\]

dos on adsorbate

\[
\frac{\gamma_i^2 \nu_0(E)}{[E - \epsilon_i - \gamma_i^2 R(E)]^2 + [\pi \gamma_i^2 \nu_0(E)]^2}
\]

Origin: level repulsion

(2nd order perturbation theory: \(\frac{\gamma_i^2}{E_i - E} \))
Randomly placed adsorbates

\[\tau^{-1} = \frac{2\pi}{\hbar} n_i \nu_0 |t_i|^2 \]

\[\sigma = e^2 D \nu_0 \]

\[D = \frac{\langle \nu_k \rangle_{E_F}}{2\langle \nu_k^{-1} \rangle_{E_F}} \tau \]

\[A = (3\sqrt{3}/4)a^2 \]
Comparison to numerics

Fixed width nanoribbon

Averaged over width
Additional Coulomb scattering

\[x = \frac{2\pi}{\beta} \frac{n_i}{n_f} \]: relative amounts of disorder

\[\tau_i^{-1} = n_i \beta \frac{\gamma^2}{\hbar |\varepsilon|} \]

\[\sigma_i = \frac{2\pi \sqrt{3}}{n_i \beta} \frac{g_s e^2}{h} n_e \]
Additional Coulomb scattering

Additional scattering

\[\tau_i^{-1} = n_i / \beta \frac{\gamma^2}{\hbar |\varepsilon|} , \]

\[\sigma_i = \frac{2\pi \sqrt{3}}{n_i \beta} \frac{g_s e^2}{h} n_e \]

4x10^{12} \text{ cm}^{-2}

\[x = (2\pi / \beta)(n_i / n_l) : \text{relative amounts of disorder} \]
hydrogenated graphene...

3.8 \times 10^{12} \text{ cm}^{-2}
Fundamentally, the asymmetry with respect to E_D arises from the position of a dispersionless hydrogen acceptor level, which is not centered at E_D as for carbon vacancies (in a treatment without second neighbor hopping [16]) but instead ~ 200 meV above E_D [4,9,20]. This state, although weak, is observed by comparing ARPES for the clean and disordered sample obtained far from the π bands [Fig. 2(e)]; it imposes another particle-hole symmetry breaking factor discussed later.
Quantum corrections

Random potential with TRS → described by 5 parameters:

- α_0 (preserves all rotation (C_{6v}) symmetries)
- β_z, γ_z (preserve C_{3v} symmetry)
- $\beta_\perp, \gamma_\perp$ (preserve no symmetry)

$\beta_{z,\perp}$: induce intervalley scattering

$$\sigma = \frac{g_s e^2}{\hbar \pi^2} \left(\frac{\alpha_0}{2} + \beta_\perp + \gamma_\perp + \frac{3}{2} \beta_z + \frac{3}{2} \gamma_z \right)^{-1}$$

adsorbate scattering:

$$\alpha_0 = \gamma_z = \beta_\perp / 2 = \frac{A_c n_i |t_0(\varepsilon_F)|^2}{2\pi \langle v_k \varepsilon_F \rangle / \langle v_k^{-1} \varepsilon_F \rangle}, \quad \beta_z = \gamma_\perp = 0$$

- $\beta_\perp \gtrsim$ others indicates negative quantum corrections to σ.

[McCann et al., PRL 97, 146805 (2006)]
Test: increase adsorbate concentration
Renormalization group

- resum corrections into renormalized parameters \tilde{a}_0 etc.
- here: follow formulation in abovementioned parameters
 [Ostrovsky, Gorny and Mirlin, PRB 74, 235443 (2006)]
- flow equations

\[
\begin{align*}
\dot{a}_0 &= 2a_0(a_0 + \beta_\perp + \gamma_\perp + \beta_z + \gamma_z) + \beta_\perp \beta_z + 2\gamma_\perp \gamma_z, \\
\dot{\beta}_\perp &= 4(a_0 \beta_z + \beta_\perp \gamma_\perp + \beta_z \gamma_z), \\
\dot{\beta}_z &= 2(a_0 \beta_\perp - \beta_z a_0 + \beta_\perp \gamma_z + \beta_z \gamma_z), \\
\dot{\gamma}_\perp &= 4a_0 \gamma_z + \beta_\perp^2 + \beta_z^2, \\
\dot{\gamma}_z &= 2\gamma_z(-a_0 - \beta_\perp + \beta_z + \gamma_\perp - \gamma_z) + 2a_0 \gamma_\perp + \beta_\perp \beta_z, \\
\dot{\epsilon} &= \epsilon(1 + a_0 + \beta_\perp + \gamma_\perp + \beta_z + \gamma_z),
\end{align*}
\]
- $\dot{X} \equiv dX/d\ln(L/a)$.
- integrate until ϵ reaches cutoff (bandwidth)
 (running length L from a to $\sim \lambda_F$)
Comparison to numerics

renormalization group

transport computations

(a)

(b)
Towards strong localization

Scaling theory: large systems should be insulating

Hydrogenated graphene

D. C. Elias et al
Science 323, 610 (2009)
Towards strong localization

Here:
Quasi-1d Nanoribbon
Onsite potential V_0, coverage p
exponential decay of conductance $g \sim \exp(-L/\xi)$

- Localization length ξ can become very large
- Transient regime: ‘ballistic’ minimal conductivity
- Both happens away from the nominal Dirac point
average effect of adsorbates

Effective Dirac point shifted to

\[\bar{V} = V_0 p \]

 Localization length diverges at effective Dirac point

\[\xi = \frac{\pi \sqrt{3}}{4} \frac{t^3 W}{p(1-p) V_0^2 \rho^2 (\mu - \bar{V})} N_p, \]

Effective potential step induces evanescent modes

-> intrinsic pseudodiffusive regime
Acknowledgments:

- **Modelling, kinetic theory and quantum corrections:**
 JP Robinson, L Oroszlány, VI Fal’ko

- **Localization:**
 P Dietl, G Metalidis, D Golubev,
 P San-Jose, E Prada, G Schön
Transport in graphene w/adsorbed molecules

- chemistry-dependent energy-dependent scattering
- strong coupling shifts resonance towards Dirac point
- transport asymmetric about Dirac point
- small impurity concentration: kinetic theory
- cumulative effect of many impurities: quantum corrections towards localization
- RG (quantitative agreement in perturbative regime)

- disorder-induced pseudodiffusion and localization

See also: PRL 101, 196803 (2008), PRB 79, 195413 (2009)