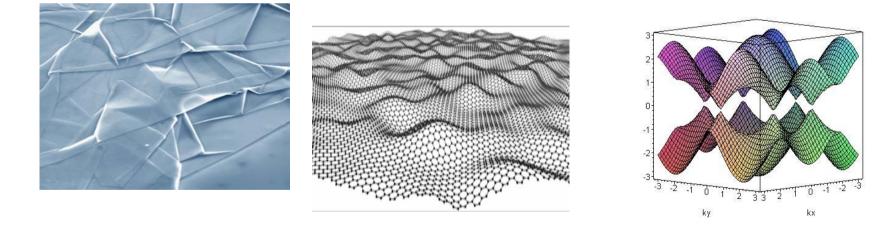


Transition from metallic to insulating behavior

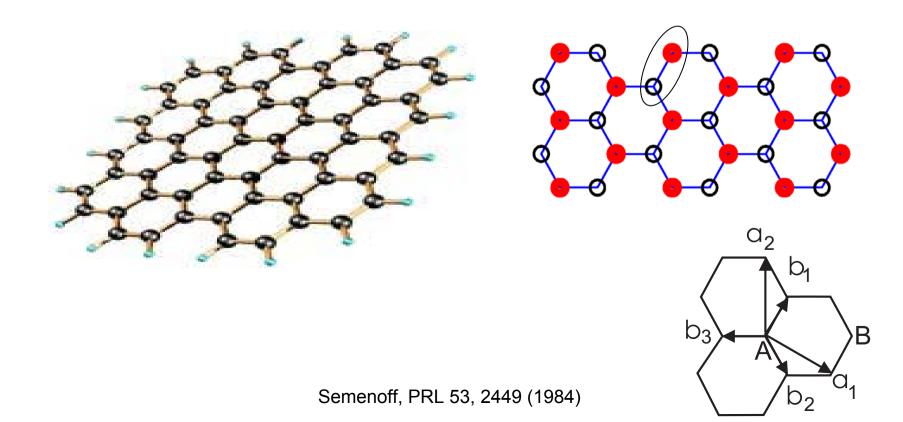
Klaus Ziegler



Workshop on Graphene, Benasque, July 2009

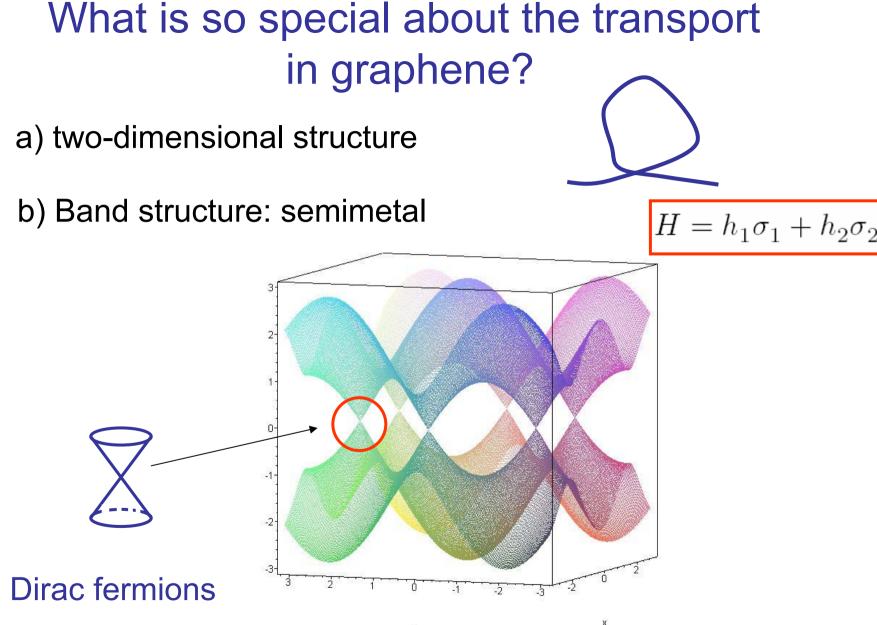
Structure of Graphene

Honeycomb lattice formed by carbon atoms



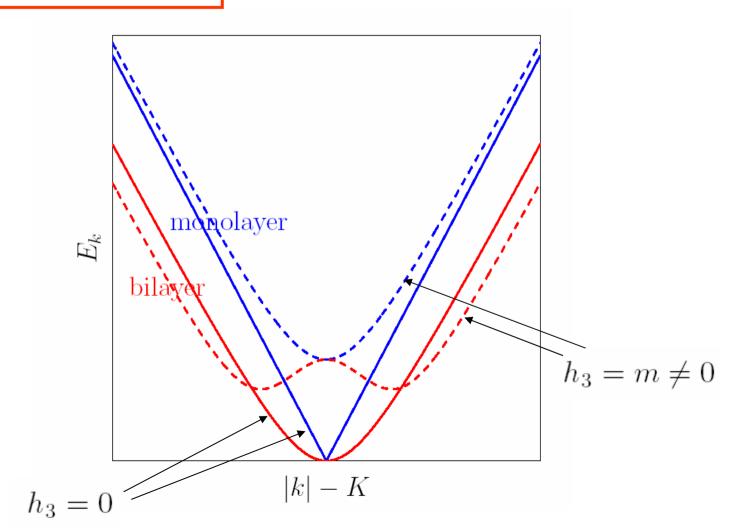
Outline: gap opening and disorder

- monolayer vs. bilayer graphene
- some experimental facts
- diffusive regime: min. conductivity etc.
- gap opening: MI transition
- minimal conductivity for a random gap
- localized regime: hopping transport
- breaking valley symm.: Nernst conductivity
- Rabi oscillations between Landau levels
- local probing: local density of state correlations



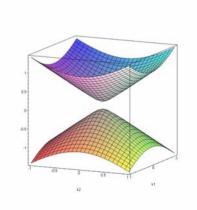
Low-energy spectrum

 $H = h_1 \sigma_1 + h_2 \sigma_2 + h_3 \sigma_3$

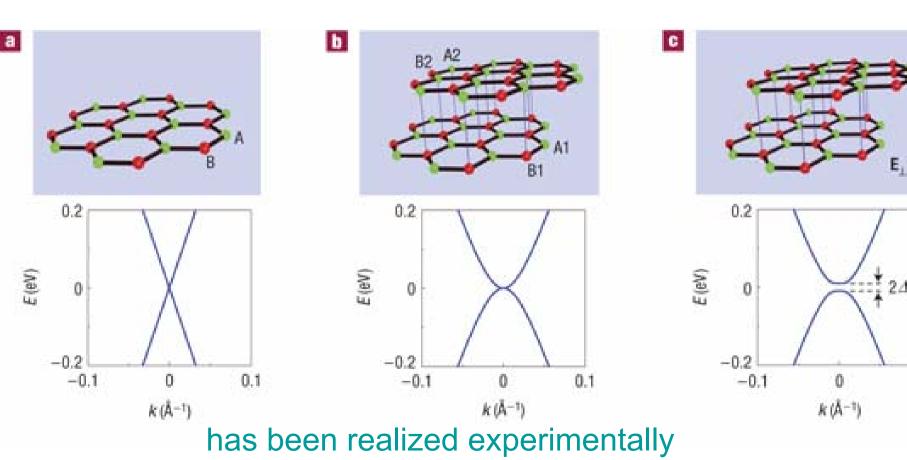


Gap opening: experimental facts

- gated graphene:
- continuous change between holes & electrons
- metallic behavior, high mobility
- Opening of a gap:
- ML: Hydrogenation
- BL: two gates
- magnetic field



monolayer & bilayer graphene: low-energy dispersion

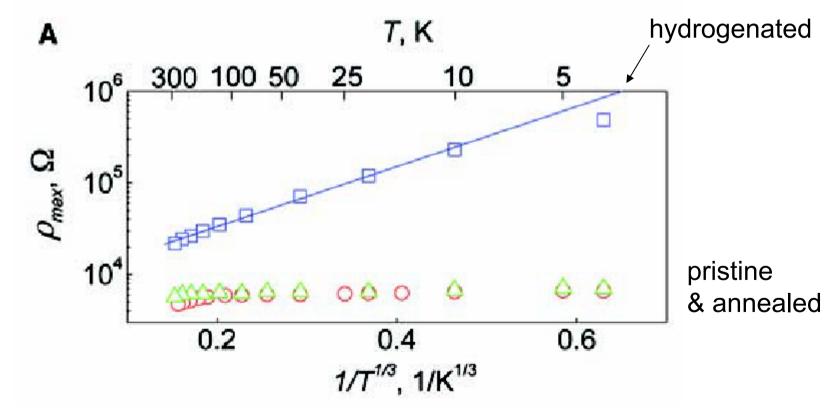


Oostinga et al., Nature Materials 7, 151

graphene + hydrogen

variable-range hopping [Mott]:

$$\sigma(T) \approx \sigma_0 e^{-(T_0/T)^{1/3}}$$

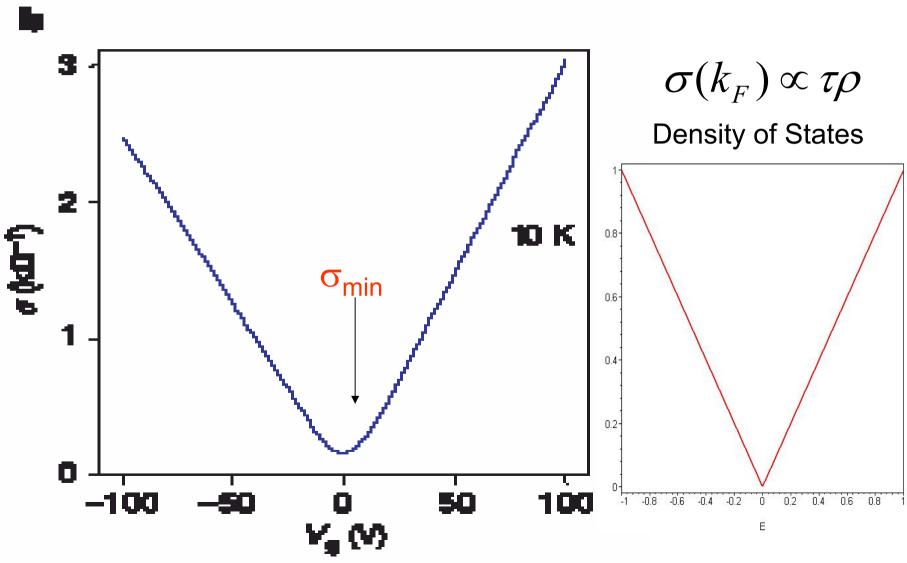


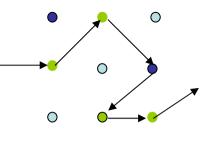
No gap but localized states!

Elias et al., Science 323, 610

Conductivity in gated graphene

[Novoselov et al., Nature 438 (2005)]





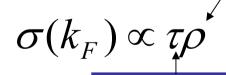
Transport Theory

Scattering \longrightarrow diffusive transport

Classical Boltzmann theory for the conductivity

Density of states

Einstein relation:

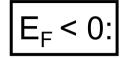


or: diffusion coefficient D

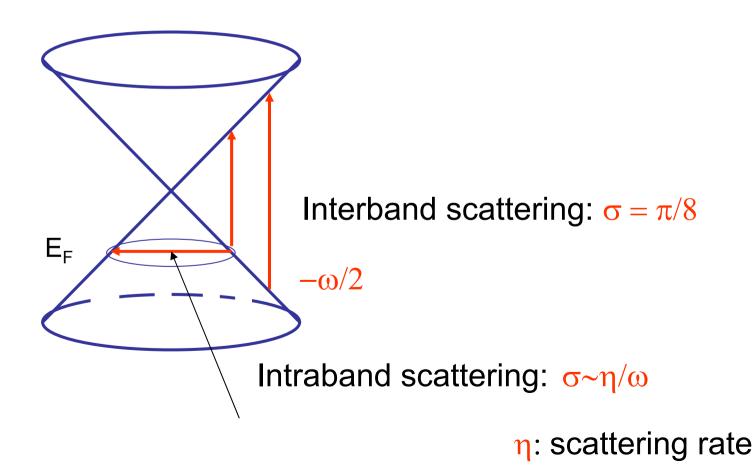
Drude theory:

$$\sigma(\omega) = \frac{\sigma_0 \tau}{1 + i\omega\tau}$$

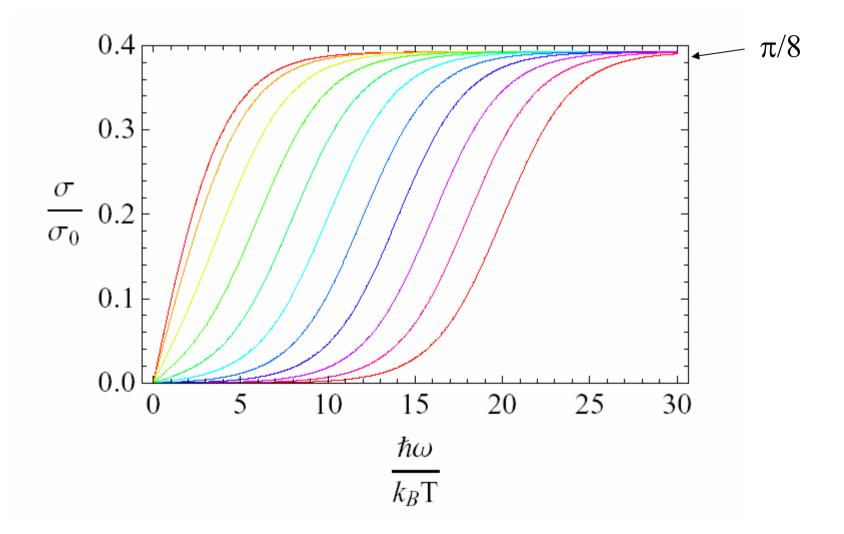
intra- & interband scattering



dynamical conductivity $\sigma(\omega)$



dynamical conductivity: Theory



Minimal conductivity: intra- & interband scattering

$$E_{\rm F} \sim 0$$
: Dirac point

inter- & intraband scattering are mixed up

limiting processes (T, ω , $\eta \rightarrow 0$) do not commute

$$\sigma_1^{\min} = \frac{1}{\pi} \frac{e^2}{h}$$

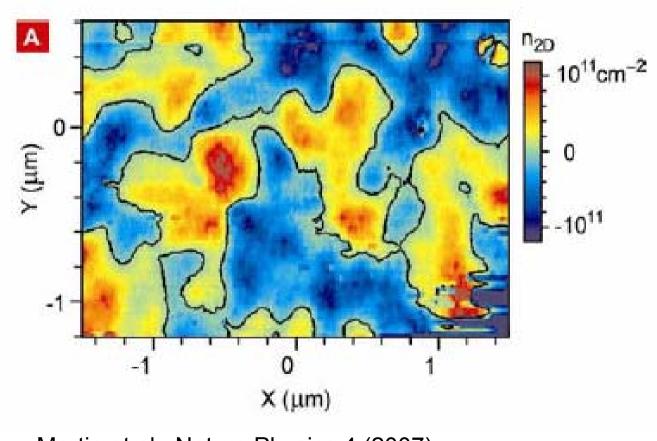
$$Z, \text{ PRB75, 233407}$$

$$\sigma_2^{\min} \approx \frac{\pi}{8} \frac{e^2}{h} \quad \text{for } \eta \approx 0$$

$$\sigma_3^{\min} \approx \frac{\pi}{4} \frac{e^2}{h} \quad \text{for } \eta \approx \omega$$

Disorder II

charge distribution @ T=0.3 K



Martin et al., Nature Physics 4 (2007)

Effect of disorder: transport I

 $\omega/2$

 $\omega/2$

Kubo formalism

Interband scattering:

$$\sigma_0(\omega) = -\frac{e^2}{2h}\omega^2 \langle \Phi_{-\omega/2} | r_k^2 | \Phi_{\omega/2} \rangle$$

$$= \frac{e^2}{2h} \omega^2 \sum_{r} r_k^2 T r_2 [\sigma_3 G_{r0}(\omega/2 + i\eta) \sigma_3 G_{0r}(\omega/2 + i\eta)]$$

Effect of disorder: transport II

Factorization:

$$\langle G^+_{rr',jj}G^+_{r'r,kk}\rangle \approx \langle G^+_{rr',jj}\rangle\langle G^+_{r'r,kk}\rangle$$

SCBA:
$$\langle G^{\pm} \rangle \approx (H_0 \pm i \eta)^{-1} \quad \eta \sim e^{-\pi/g}$$
 (MLG)

Problem: exponential decay on scale 1/η

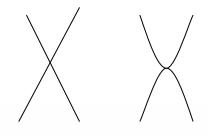
Diffusion stops for scales L > $1/\eta$

Diffusion on large scales

large scale properties are determined by

symmetries & spontaneous symmetry breaking

classical examples in 2D: -phase transition in the Ising model -Kosterlitz-Thouless transition in the XY model



chiral symmetry

Hamiltonian (gapless low-energy quasiparticles of monolayers and multilayers)

$$H = h_1 \sigma_1 + h_2 \sigma_2$$

 ${\bf continuous} \ {\rm symmetry} \ {\rm transformation}:$

$$H \to e^{i\alpha\sigma_3} H e^{i\alpha\sigma_3} = H \quad (0 \le \alpha < 2\pi)$$

special case: $\alpha = \pi/2$

$$e^{i\alpha\sigma_3} = i\sigma_3$$

implies for eigenspinor Φ_E

$$\sigma_3 \Phi_E = \Phi_{-E}$$

Spontaneous symmetry breaking

order parameter for SCSB:

$$\lim_{\epsilon \to 0} \left[(H + i\epsilon)_{rr}^{-1} - (H - i\epsilon)_{rr}^{-1} \right] \propto \rho_r(0) \propto \eta$$

diffusion propagator

$$\frac{1}{K(q)} \sim \frac{\eta^3/4}{i\omega + Dq^2}$$

with the diffusion coefficient

$$D = \frac{1}{2\eta} \int_{k} \sum_{j} \left(\frac{\partial h_{j}}{\partial k_{l}} \frac{\partial h_{j}}{\partial k_{l}} - \frac{\partial^{2} h_{j}}{\partial k_{l}^{2}} h_{j} \right)$$

PRB78, 125401

localization:

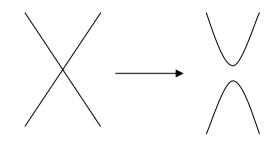
$$\langle \Phi_{\omega/2} | r_k^2 | \Phi_{-\omega/2} \rangle = -\frac{4}{\omega^2} \begin{cases} \eta^3 D/g^2 & \text{for } \eta \gg \omega \\ 1 & \text{for } \eta \ll \omega \end{cases}$$

Conductivity due to inter-band scattering:

$$\sigma_0(\omega) = -\frac{e^2}{4\pi\hbar} \omega^2 \langle \Phi_{\omega/2} | r_k^2 | \Phi_{-\omega/2} \rangle \sim \frac{e^2}{\pi\hbar} \frac{\eta_0^2}{g^2} \int_k \sum_j \left(\frac{\partial h_j}{\partial k_l} \frac{\partial h_j}{\partial k_l} \right)$$

PRL100, 166801

Breaking the sublattice symmetry: Effect of gap opening on transport



- abrupt (first order) transition to insulator?
- Or smooth (second order) transition?
- Consequence of an inhomogeneous gap?

Opening of a gap by breaking the sublattice symmetry

broken chiral symmetry

 $\begin{array}{ll} \mbox{Hamiltonian (gapful low-energy quasiparticles of monolayers and multilayers)} \\ \hline H = h_1 \sigma_1 + h_2 \sigma_2 + m \sigma_3 & \mbox{m=V}_{A} \mbox{-V}_{B} \end{array}$

 $\underline{\mathbf{discrete}} \ {\rm symmetry} \ {\rm transformations}:$

a) for
$$h_j^T = h_j$$

 $H \to -\sigma_2 H^T \sigma_2 = H$
b) for $h_j^T = -h_j$
 $H \to -\sigma_1 H^T \sigma_1 = H$
random gap: $\langle m_r \rangle_m = \overline{m} \quad \langle (m_r - \overline{m})(m_{r'} - \overline{m}) \rangle_m = g \, \delta_{r,r'}$

Two-particle Green's function:

$$\hat{G}(i\epsilon) = \begin{pmatrix} \sigma_0 & 0 \\ 0 & -\sigma_0 \end{pmatrix} \begin{pmatrix} \sigma_0 & 0 \\ 0 & i\sigma_n \end{pmatrix} \\ \times \begin{pmatrix} H + i\epsilon & 0 \\ 0 & H^T + i\epsilon \end{pmatrix}^{-1} \begin{pmatrix} \sigma_0 & 0 \\ 0 & i\sigma_n \end{pmatrix}.$$

The extended Hamiltonian \hat{H} =diag(H, H^T) is invariant under a global "rotation"

$$\hat{H} \to e^{\hat{S}} \hat{H} e^{\hat{S}} = \hat{H}, \quad \hat{S} = \begin{pmatrix} 0 & \alpha \sigma_n \\ \alpha' \sigma_n & 0 \end{pmatrix}$$
 (18)

Symmetry is spontaneously broken: massless fermion mode

PRL80, 3113

Effective theory

scattering rate:

$$\eta^{2} = (m_{c}^{2} - \bar{m}^{2})\Theta(m_{c}^{2} - \bar{m}^{2})/4 \qquad m_{c} = \begin{cases} \frac{2\lambda}{\sqrt{e^{2\pi/g} - 1}} \sim 2\lambda e^{-\pi/g} & \text{(MLG)} \\ g/2 & \text{(BLG)} \end{cases}$$

disorder scaling function:

$$\langle \langle \Phi_{\omega/2} | r_k^2 | \Phi_{-\omega/2} \rangle \rangle_m = -\frac{\eta'^2}{(\omega/2)^2} \langle \Phi_{i\eta'}^0 | r_k^2 | \Phi_{-i\eta'}^0 \rangle$$

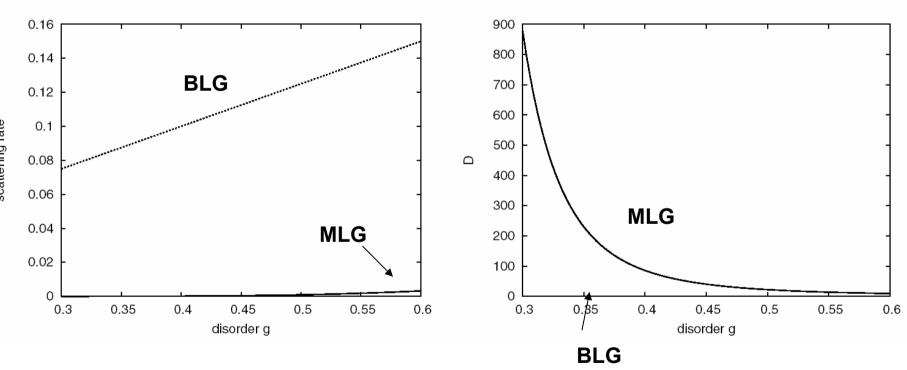
diffusion coefficient:

$$D = \frac{g\eta'}{2} \langle \Phi^0_{i\eta'} | r_k^2 | \Phi^0_{-i\eta'} \rangle$$

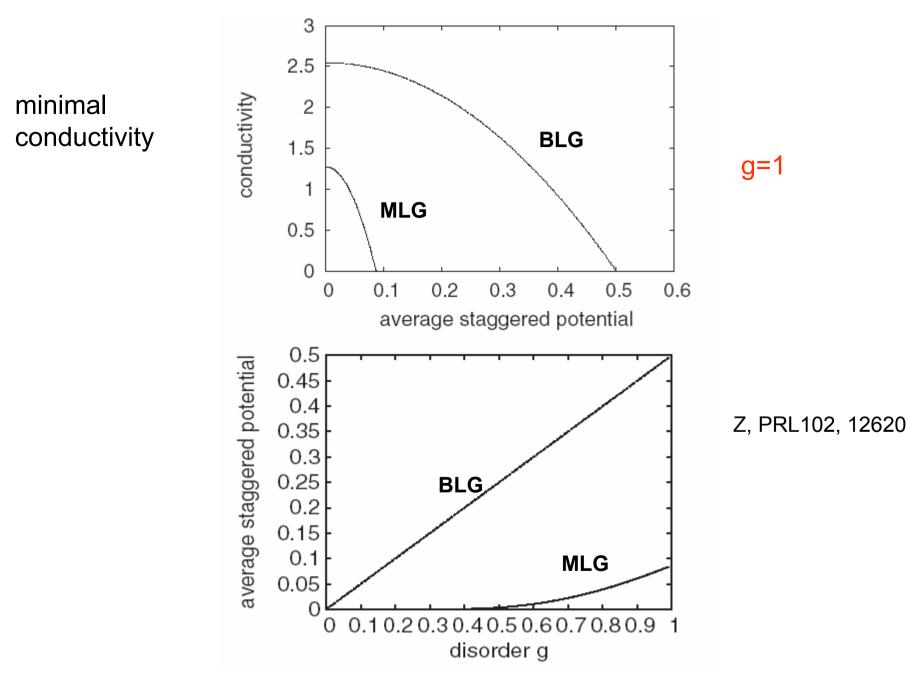
$$\sigma_0(\omega) \sim \frac{4a {\eta'}^2}{\pi (4 {\eta'}^2 + \bar{m}^2)} \Theta(m_c^2 - \bar{m}^2) \frac{e^2}{h}$$

PRL102.126802: PRB79. 195424

Scattering rate & diffusion coefficient

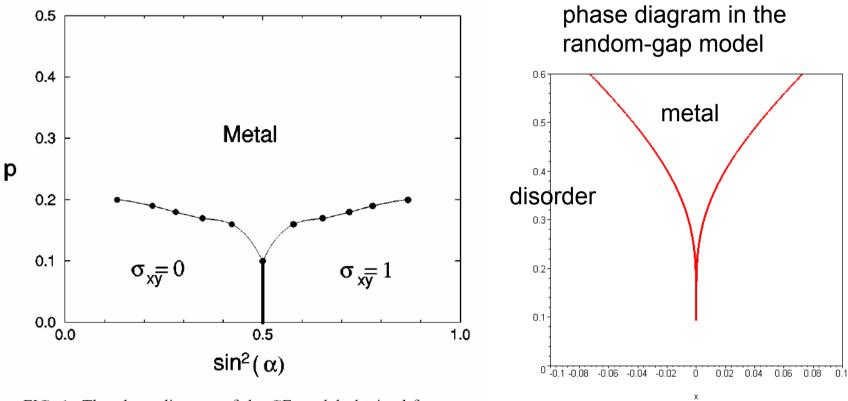


Z, PRB 79,195424

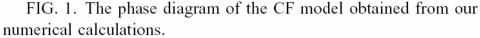


Thermal metal in network models of a disordered two-dimensional superconductor

J. T. Chalker,¹ N. Read,² V. Kagalovsky,^{3,4} B. Horovitz,⁴ Y. Avishai,⁴ and A. W. W. Ludwig⁵



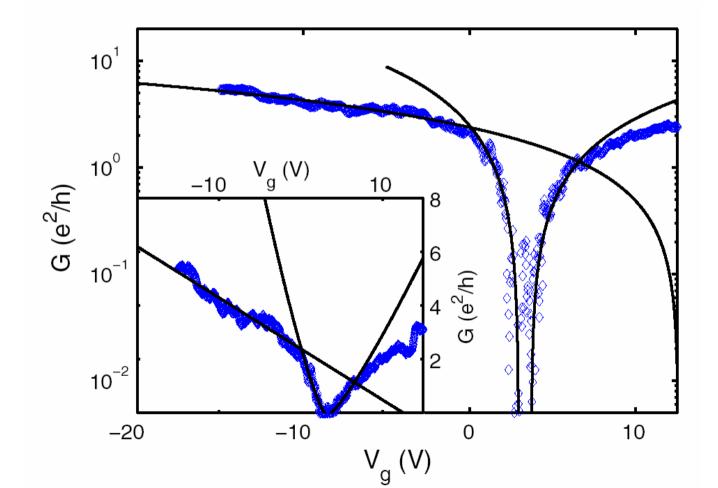
average gap parameter m



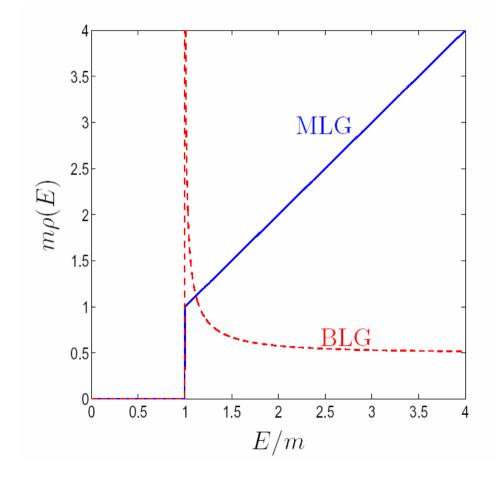
Conductivity transition due to gap opening

Adam et al., PRL101, 046404

fixed average gap

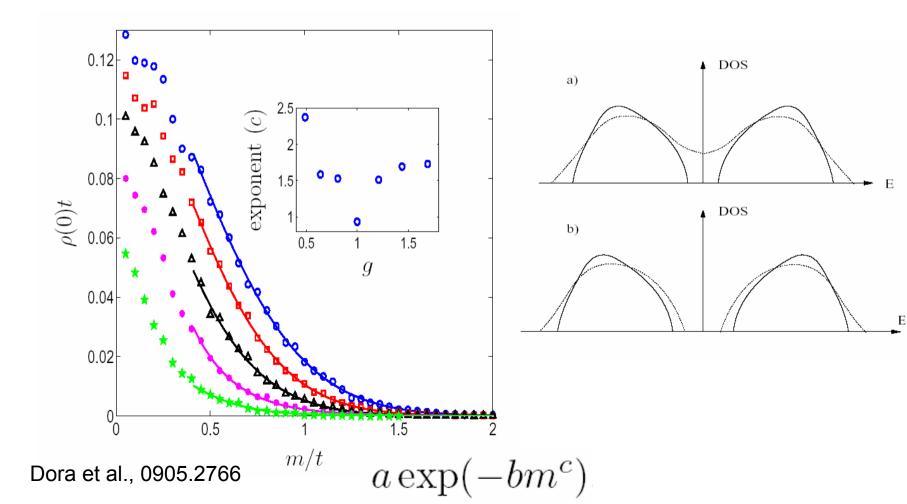


Behavior in the localized regime Density of states: uniform gap



Density of states: random gap model

DoS at the Dirac point: Lifshitz tails

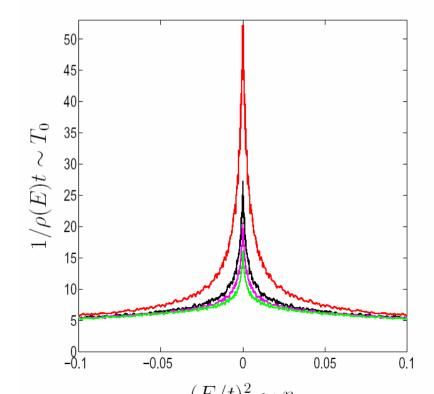


Hopping conductivity

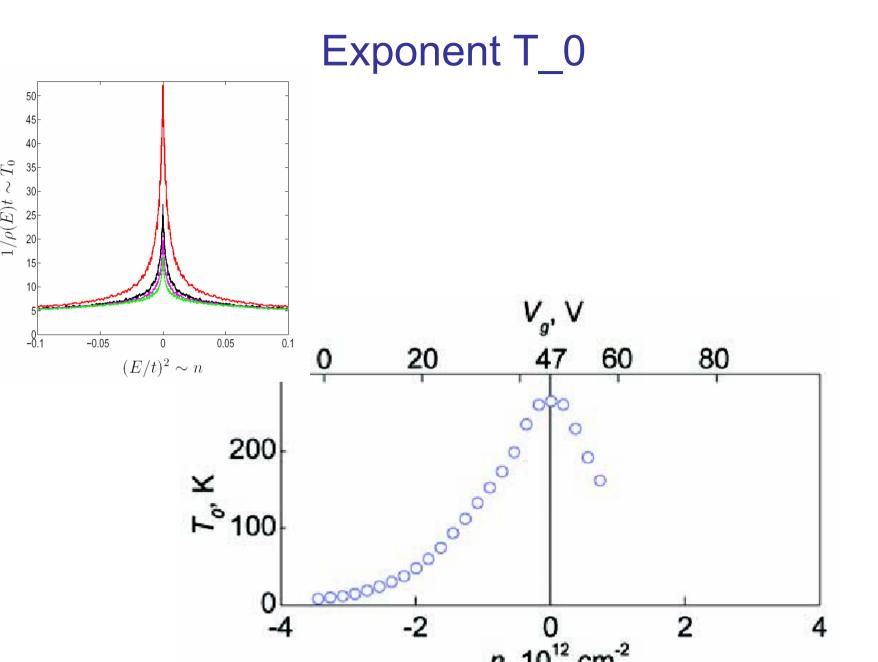
variable-range hopping [Mott]:

$$\sigma(T) \approx \sigma_0 e^{-(T_0/T)^{1/3}}$$

ora et al., 0905.2766



 $k_B T_0 \propto \frac{1}{\xi^2 \rho(E_F)}$

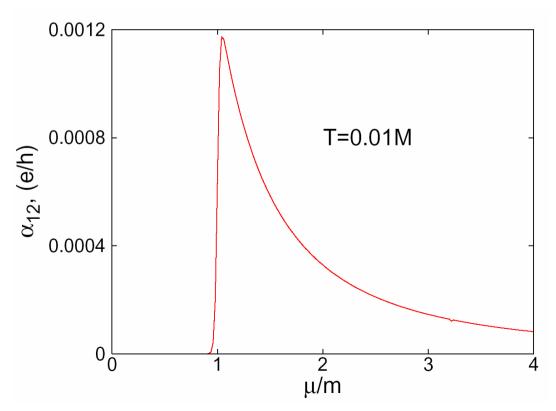


Thermal conductivity: anomalous Nernst effect

$$J_x = \alpha_{xy} \left(-\partial_y T \right)$$

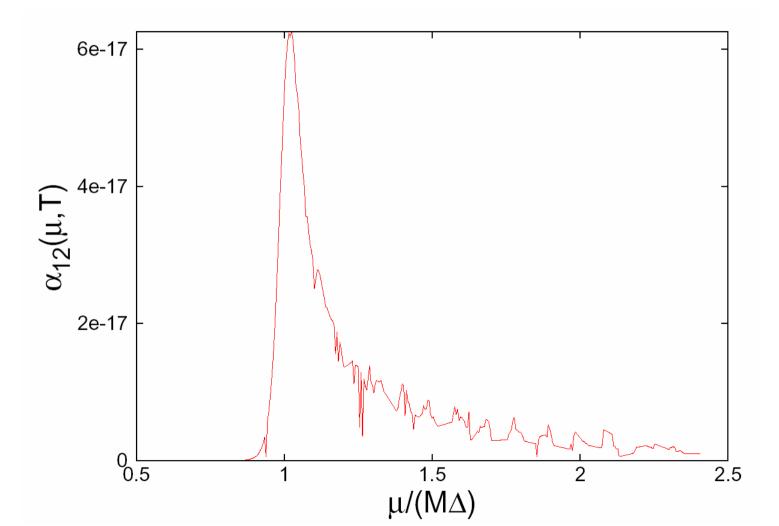
$$H = h_1 \sigma_1 + h_2 \sigma_2 + h_3 \sigma_3$$

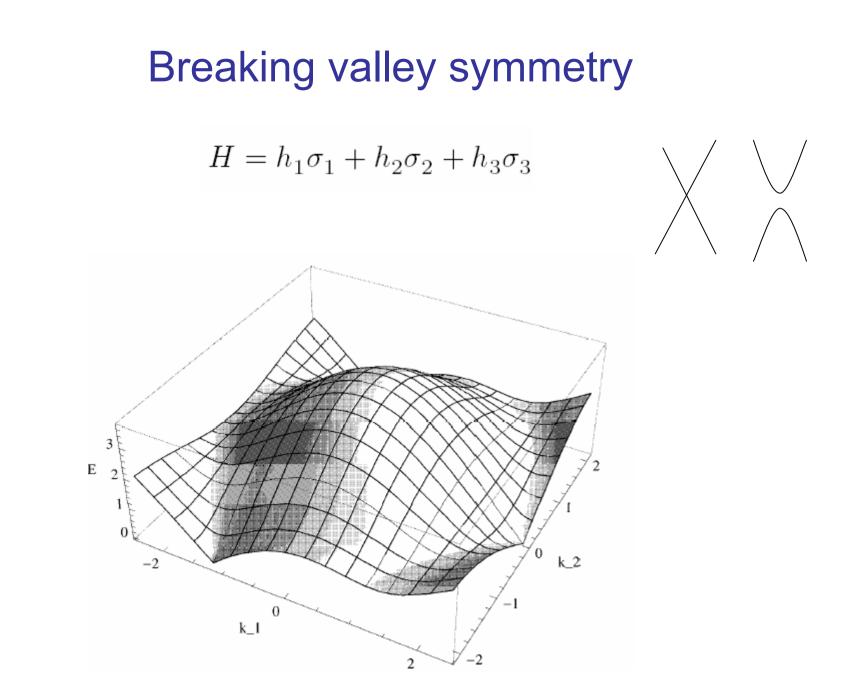
single massive Dirac cone:



Nernst coefficient II

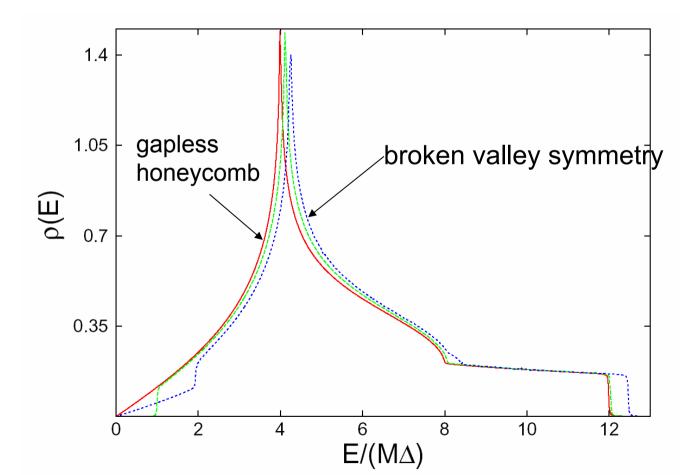
Honeycomb lattice with uniform gap



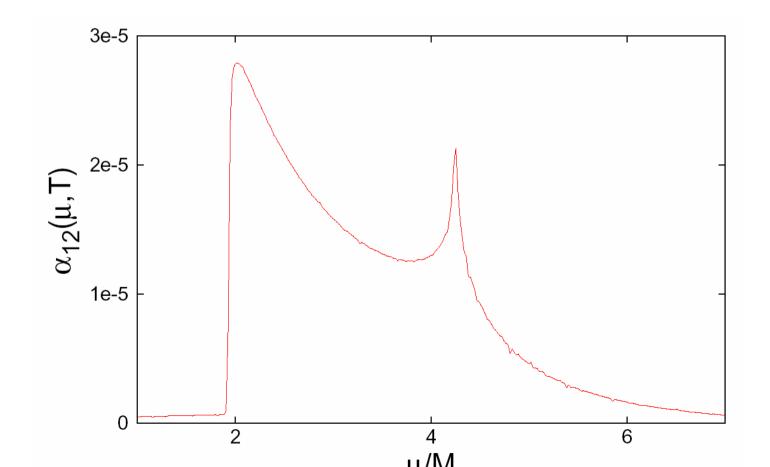


Densities of states

Honeycomb lattice with broken valley symmetry



Nernst coefficient III



Conclusions

Interband scattering is relevant Diffusion due to **massless modes**:

a) spontaneous chiral symmetry breaking (SCSB)b) spontaneous super symmetry breaking (SSSB)Constant optical conductivity

Fluctuating gap:

- A) diffusion for small <m>
- B) Metal-insulator transition for nonzero <m>
- MIT is second order
- gap formation: disorder creates localized states

Homogeneous magnetic field:

Rabi oscillations