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Introduction
Underactuated Mechanical Systems

A Control System is underactuated if the number of the control
inputs is less than the dimension of the configuration space.

For example

To balance a cylindrical rod on your hand.
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Introduction

1 Q configuration space,

2 TQ Velocity space,

3 Lagrangian L : TQ→ R, diferentiable function

4 Euler-Lagrange equations d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= 0,

5 Hamilton equations ∂H
∂qi

= −ṗi, ∂H
∂pi

= q̇i,

6 2-Cartan form ΩL := −dΘL = dqi ∧ dpi,
7 Energy EL := q̇ipi − L,
8 Dynamic equations iXΩL = dEL.
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Introduction
Optimal Control for Underactuated Mechanical Systems in standard coordinates

1 Configuration space Q = Q1 ×Q2

2 Velocity space TQ = TQ1 × TQ2

3 Coordinates (qA) = (qa, qα), 1 ≤ A ≤ n in Q; (qa),
1 ≤ a ≤ r, y (qα), r + 1 ≤ α ≤ n coordinates in Q1 and Q2

respectively.

4 Lagrangian L : TQ→ R regular.
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Introduction
Optimal Control for Underactuated Mechanical Systems in standard coordinates

Euler-Lagrange equations with control

d

dt

(
∂L

∂q̇a

)
− ∂L

∂qa
= ua,

d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα
= 0

(1)

Disadvantages

1 No included external forces

2 No included control forces
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Quasivelocities

Q, configuration space n-dimensional

(qA) coordinates in Q

{XB} local basis of vector fields defined in the same
coordinate neighbourhood.

The component to XB relative to the standard basis ∂
∂qj

will be

denoted XA
B , that is XB = XA

B (q) ∂
∂qA

.

Let (y1, ..., yn) (the quasivelocities) be the components of a
velocity vector v on TQ relative to the basis XB, then

v = yBXB(q) = yBXA
B (q)

∂

∂qA
,

therefore, q̇A = yBXA
B (q).
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Quasivelocities

On TQ we have induced coordinates {(qA, yA) | A = 1, ..., n}.

The bracket of vector fields XA is of the form [XA, XB] = CDABXD

where CDAB are called Hamel’s symbols or structure coefficients.

The Euler-Lagrange equations in quasivelocities or Hamel equations

q̇A = yBXA
B (q)

d

dt

(
∂L

∂yA

)
=

∂L

∂qB
XA
B − CDAByB

∂L

∂yD

Leonardo Colombo XVIII International Fall Workshop on Geometry and Physics



Quasivelocities

On TQ we have induced coordinates {(qA, yA) | A = 1, ..., n}.

The bracket of vector fields XA is of the form [XA, XB] = CDABXD

where CDAB are called Hamel’s symbols or structure coefficients.

The Euler-Lagrange equations in quasivelocities or Hamel equations

q̇A = yBXA
B (q)

d

dt

(
∂L

∂yA

)
=

∂L

∂qB
XA
B − CDAByB

∂L

∂yD

Leonardo Colombo XVIII International Fall Workshop on Geometry and Physics



Quasivelocities

On TQ we have induced coordinates {(qA, yA) | A = 1, ..., n}.

The bracket of vector fields XA is of the form [XA, XB] = CDABXD

where CDAB are called Hamel’s symbols or structure coefficients.

The Euler-Lagrange equations in quasivelocities or Hamel equations

q̇A = yBXA
B (q)

d

dt

(
∂L

∂yA

)
=

∂L

∂qB
XA
B − CDAByB

∂L

∂yD

Leonardo Colombo XVIII International Fall Workshop on Geometry and Physics



Optimal Control for Underactuated Mechanical Systems

In standard local coordinates the control equations that we will are

d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= FA + uaX

a
A

where F = FA(q, q̇)dqA represents given external forces and
X
a = X

a
A(q)dqa, 1 ≤ a ≤ m ≤ n, the control forces.

Complete with 1-form X
α

to local basis {Xa
, X

α} of Λ1Q and
take its dual basis that we denote by {Xa, Xα}.
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Optimal Control for Underactuated Mechanical Systems

Taking quasivelocities induced by the local basis {Xa, Xα}, the
control equations are written as

Lagrangian Control Equation in Quasivelocities

q̇A = yBXA
B (q)

d

dt

(
∂L

∂ya

)
− ∂L

∂qB
XB
a + CDaByB

∂L

∂yD
= FAX

A
a + ua,

d

dt

(
∂L

∂yα

)
− ∂L

∂qB
XB
α + CDαByB

∂L

∂yD
= FAX

A
α .

Leonardo Colombo XVIII International Fall Workshop on Geometry and Physics



Optimal Control for Underactuated Mechanical Systems

Taking quasivelocities induced by the local basis {Xa, Xα}, the
control equations are written as

Lagrangian Control Equation in Quasivelocities

q̇A = yBXA
B (q)

d

dt

(
∂L

∂ya

)
− ∂L

∂qB
XB
a + CDaByB

∂L

∂yD
= FAX

A
a + ua,

d

dt

(
∂L

∂yα

)
− ∂L

∂qB
XB
α + CDαByB

∂L

∂yD
= FAX

A
α .

Leonardo Colombo XVIII International Fall Workshop on Geometry and Physics



Optimal Control Problem for Underactuated Mechanical
Systems

Problem

The optimization problem deals with the problem of finding a
control law for the system such that a certain optimality criterion
is achieved. Usually, the optimization criterion is given by a cost
functional of the type

A =
∫ tf

t0

C(qA(t), yA(t), ua(t))dt.
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Optimal Control Problem for Underactuated Mechanical
systems

This optimal control problem is equivalent to the following
constrained variational problem

Minimize A =
∫ tf

t0

L̃
(
qA(t), yA(t), ẏA(t)

)
dt

subject to constraints

Φα(qA, yA, ẏA(t)) =
d

dt

(
∂L

∂yα

)
− ∂L

∂qB
XB
α +CDαByB

∂L

∂yD
−FAXA

α = 0,

where L̃ is defined as

L̃(qA, yA, ẏA) = C

(
d

dt

(
∂L

∂yα

)
− ∂L

∂qB
XB
α + CDαByB

∂L

∂yD
− FAXA

α

)
.
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Optimal Control for Underactuated Mechanical Systems

Geometrically, we have that (qA, yA, ẏA) are coordinates on T (2)Q,
and the constraints Φα determines a submanifold M of T (2)Q and
L̃ is a lagrangian function also defined in T (2)Q, that is
L̃ : T (2)Q→ R.

The canonical inmersion j2 : T (2)Q→ T (TQ) in the induced
coordinates (qA, yA, ẏA) is

T (2)Q→ TTQ
(qA, yA, ẏa) 7→ (qA, yA, XA

By
B, ẏa)

Assume that the matrix
(

∂2L
∂yα∂yβ

)
1≤α,β≤n−m

is regular, then we

can rewrite the constraints in the form ẏβ = Gα(qA, yA, ẏa) and,
coordinates (qA, yA, ẏa) on M.
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B, ẏa)

Assume that the matrix
(

∂2L
∂yα∂yβ

)
1≤α,β≤n−m

is regular, then we

can rewrite the constraints in the form ẏβ = Gα(qA, yA, ẏa) and,
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Optimal Control for Underactuated Mechanical Systems

Let us define L̃M by L̃M = L̃ |M:M→ R and consider
W0 =M×TQ T ∗TQ with induced coordinates
(qA, yA, ẏa, pA, p̃A).

Let us define the 2-form Ω = pr∗2(ωTQ) on W0, where ωTQ is the
canonical symplectic form on T ∗TQ, and
H̃(vx, αq) = 〈αx, (j2) |M (vx)〉 − L̃M(vx) where
x ∈ TQ, vx ∈M§(τTQ |M)−1(x) and αx ∈ T ∗xTQ.

In coordinates

Ω = dqA ∧ dpA + dyA ∧ dp̃A,

H̃ = pAX
A
B (q)yB + p̃aẏ

a + p̃αG
α(qA, yA, ẏa)− L̃M(qA, yA, ẏa).
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Optimal Control for Underactuated Mechanical Systems

The dynamics of this variational constrained problem is
determining by the solution of the equation

iXΩ = dH̃.

Ω is a presymplectic form and kerΩ = span〈 ∂
∂ẏa 〉.

Following the Gotay-Nester-Hinds algorithm we obtain the primary

constraints dH̃
(

∂
∂ẏa

)
= 0, that is

ϕa =
∂H̃

∂ẏa
= p̃a + p̃α

∂Gα

∂ẏa
− ∂L̃M

∂ẏa
= 0
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Optimal Control for Underactuated Mechanical Systems

The dynamics is restricted to the manifold W1 determined by the
vanishing of the constraints ϕa = 0. Observe that dimW1 = 4n
with induced coordinates (qA, yA, ẏa, pA, p̃a).

A curve solution of dynamic equations must verify the following
system of diferential equations
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Optimal Control for Underactuated Mechanical Systems

dqA

dt
= XA

B (q(t))yB(t) (2)

dyα

dt
= Gα(qA(t), yA(t),

dya

dt
)

dya

dt
= ẏa(t) (3)

dpA
dt

= −pC(t)
∂XC

B

∂qA
(q(t))yB(t)− p̃α(t)

∂Gα

∂qA
(qB(t), yB(t), ẏb)

+
∂L̃M
∂qA

(qB(t), yB(t), ẏb(t)) (4)

dp̃A
dt

= −pC(t)XC
A (q(t))− p̃α(t)

∂Gα

∂yA
(qB(t), yB(t), ẏb)

+
∂L̃M
∂yA

(qB(t), yB(t), ẏb) (5)

p̃a = −p̃α
∂Gα

∂ẏa
+
∂L̃M
∂ẏa

(6)
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Optimal Control for Underactuated Mechanical Systems

From Equations (5) and (6) we deduce

d

dt

(
∂L̃M
∂ẏa

− p̃α
∂Gα

∂ẏa

)
= −pCXC

a − p̃α
∂Gα

∂ya
+
∂L̃M
∂ya

Differentiating with respect to time, replacing in the previous
equality and using (4) we obtain the following equations system
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Optimal Control for Underactuated Mechanical Systems

d2

dt2

(
∂L̃M
∂ẏa

− p̃α
∂Gα

∂ẏa

)
− d

dt

(
∂L̃M
∂ya

− p̃α
∂Gα

∂ya

)

+XA
a

(
∂L̃M
∂qA

− p̃α
∂Gα

∂qA

)
p̃Cy

B

[
XD
a

∂XC
B

∂qD
−XD

B

∂XC
a

∂qD

]
= 0

dp̃α
dt

= −pα − p̃β
∂Gβ

∂yα
+
∂L̃M
∂yα

Let us consider the 2-form ΩW1 = i∗W1
Ω where iW1 : W1 ↪→W0 is

the canonical inclusion.
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Optimal Control for Underactuated Mechanical Systems

d2
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)
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a

(
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− p̃α
∂Gα

∂qA
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B

[
XD
a

∂XC
B

∂qD
−XD

B

∂XC
a

∂qD

]
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∂yα
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Optimal Control for Underactuated Mechanical Systems

Theorem

(W1,ΩW1) is symplectic if and only if for any choise of local
coordinates (qA, yA, ẏa, pA, p̃A) on W0

det

(
∂2L̃M
∂ẏa∂ẏb

− p̃α
∂2Gα

∂ẏa∂ẏb

)
(n−m)×(n−m)

6= 0.
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