Vakonomic Constraints in Higher-Order Classical Field Theory

Cédric M. Campos

Instituto de Ciencias Matemáticas
ICMAT (CSIC-UAM-UC3M-UCM)

XVIII International Fall Workshop on Geometry and Physics
6-11 September 2009, Benasque, Spain.
1. Introduction

2. The Skinner-Rusk formalism in CFT

3. The Skinner-Rusk formalism in HOFT

4. Vakonomic constraints
Joint work with:

- Manuel de León, *ICMAT*
- David Martín de Diego, *ICMAT*
- Joris Vankerschaver, *CalTech*

C. M. Campos, M. de León, D. Martín de Diego, J. Vankerschaver. *Unambiguous formalism for higher-order Lagrangian field theories*

C. M. Campos, M. de León, D. Martín de Diego.
Vakonomic constraints in higher-order field theories
Work in progress.
Introduction

Classically we have...

- The Euler-Lagrange equations: \(\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}^i} \right) - \frac{\partial L}{\partial q^i} = 0. \)
- The Hamilton equations: \(\frac{\partial H}{\partial q_i} = -\dot{p}^i \), \(\frac{\partial H}{\partial p^i} = \dot{q}_i. \)
- The Cartan form: \(\Omega_L := -d\Theta_L = dq^i \wedge d\hat{p}_i. \)
- The Legendre transform: \(FL(q^i, \dot{q}^i) = (q^i, \hat{p}_i = \frac{\partial L}{\partial q^i}). \)
- There is an equivalence between the Lagrangian and Hamiltonian formalisms.
Question: ¿what can we do in degenerate cases?

Mark J. Gotay, James M. Nester, and George Hinds.
Presymplectic manifolds and the Dirac-Bergmann theory of constraints.

Alternative: to combine the phase space and space of velocities.

Ray Skinner and Raymond Rusk.
*Generalized Hamiltonian dynamics. I. Formulation on $T^*Q \oplus TQ$.*

Adaptation: Classical Field Theory.

M. de León, J. C. Marrero, and D. Martín de Diego.
A new geometric setting for classical field theories.

General framework that recovers the well known tools of mechanics \((m = 1)\).

Nice description of the Euler-Lagrange equations.

Cartan forms may be obtained, but not canonically.

There is no well defined Legendre transform.

D. J. Saunders and M. Crampin.
\textit{On the Legendre map in higher-order field theories}
Order of the day

1. Introduction

2. The Skinner-Rusk formalism in CFT

3. The Skinner-Rusk formalism in HOFT

4. Vakonomic constraints
Order of the day

1. Introduction

2. The Skinner-Rusk formalism in CFT

3. The Skinner-Rusk formalism in HOFT

4. Vakonomic constraints
Order of the day

1. Introduction

2. The Skinner-Rusk formalism in CFT

3. The Skinner-Rusk formalism in HOFT

4. Vakonomic constraints
Order of the day

1. Introduction
2. The Skinner-Rusk formalism in CFT
3. The Skinner-Rusk formalism in HOFT
4. Vakonomic constraints
Order of the day

1. Introduction
2. The Skinner-Rusk formalism in CFT
3. The Skinner-Rusk formalism in HOFT
4. Vakonomic constraints
Different approaches

3. Classical field theory (and higher-order): multisymplectic framework.

Huge literature on regard to these subjects.

Let $\pi : E \rightarrow M$ be a fiber bundle (dim $M = m$ and dim $E = m + n$).

$J^1\pi$ denotes its first prolongation, the first jet bundle.

$J^1\pi^\dagger$ denotes its affine dual.

Coordinates:
- (x^i) for M, $d^m x = dx^1 \wedge \cdots \wedge dx^m$, $d^{m-1} x_i = i_{\partial_i} d^m x$,
- (x^i, u^α) for E,
- $(x^i, u^\alpha, u^\alpha_i)$ for $J^1\pi$,
- $(x^i, u^\alpha, p, p_i^\alpha)$ for $J^1\pi^\dagger$.

The Lagrangian function $L : J^1\pi \rightarrow \mathbb{R}$.

The mixed space of velocities and momenta: $W = J^1\pi \times_E J^1\pi^\dagger$.

The pairing $\Phi : w \in W \mapsto \langle pr_2(w), pr_1(w) \rangle = p + p_i^\alpha u^\alpha_i \in \mathbb{R}$.

The dynamical function $H = \Phi - L \circ pr_1$.

The premultisymplectic $(m + 1)$-form $\Omega = pr_2^* \Omega_{J^1\pi^\dagger}$.

The dynamical equation $i_X \Omega = dH$.

Note: we have not mentioned neither the Legendre transform, nor the Cartan form.
The multi-index notation

Definition

- A multi-index is an \(m \)-tuple \(I \in \mathbb{N}^m \) whose \(i \)-th component is \(I(i) \).
- The sum and “substraction” is defined componentwise
 \[(I \pm J)(i) = I(i) \pm J(i)\].
- The length of \(I \) is the sum \(|I| = \sum_i I(i)\), and its factorial \(I! = \prod_i I(i)! \).
- \(1_i = (\delta^i_j) = (0, \ldots, 1, \ldots, 0) \).

The partial derivatives of a function \(f : \mathbb{R}^m \rightarrow \mathbb{R} \) are

\[
f_I = \frac{\partial^{||I||} f}{\partial x^I} := \frac{\partial^{I(1)+I(2)+\cdots+I(m)} f}{\partial x_1^{I(1)} \partial x_2^{I(2)} \cdots \partial x_m^{I(m)}}.
\]

For instance, given \(f : \mathbb{R}^3 \rightarrow \mathbb{R} \),

\[
f_{(2,1,0)} = \frac{\partial^3 f}{\partial x_1^2 \partial x_2} = f_{(1,1,0) + 1_1} = f_{(2,0,0) + 1_2}.
\]
Order of the day

1. Introduction

2. The Skinner-Rusk formalism in CFT

3. The Skinner-Rusk formalism in HOFT

4. Vakonomic constraints
Let $\pi : E \longrightarrow M$ be a fiber bundle (dim $M = m$ and dim $E = m + n$).

$J^k\pi$ is the kth-jet bundle and $J^k\pi^\dagger$ is its affine dual.

Coordinates:
- (x^i, u^α_j) for $J^1\pi^\dagger$, where $|J| \leq k$,
- $(x^i, u^\alpha_i, p, p^I_{\alpha;i})$ for $J^1\pi$, where $|I| \leq k - 1$.

The Lagrangian function $L : J^k\pi \longrightarrow \mathbb{R}$.

The mixed space: $W := J^k\pi \times J^{k-1}\pi \ J^k\pi^\dagger$.

The pairing $\Phi(x^i, u^\alpha_i, u^\alpha_K, p_{\alpha;i}, p) = p_{\alpha;i}u^\alpha_i + p$.

The dynamical function $H := \Phi - L \circ pr_1$.

The canonical multisymplectic $(m + 1)$-form

$\Omega = -dp \wedge dm^x - dp_{\alpha;i}^I \wedge du^\alpha_i \wedge dm^{-1}x_i$.

The premultisymplectic $(m + 1)$-form $\Omega_H := \Omega + dH \wedge \eta$.

We look for Ehresmann conexions in the fiber bundle $\pi_W,M : W \longrightarrow M$ whose horizontal projector h satisfies

$$i_h\Omega_H = (m - 1)\Omega_H.$$
Solving the dynamical equation

In first place, we restrict to the space where such solutions exist:

\[W_1 := \{ w \in W / \exists h : T_w W \rightarrow T_w W \text{ lineal } \text{t.q. } h^2 = h, \quad \ker h = (V_{\pi_{W,M}})_w, \quad i_h \Omega_H(w) = (m - 1)\Omega_H(w) \} \]

The projectors must be of the form:

\[h = \left(\frac{\partial}{\partial x^i} + A_{ji}^{\alpha} \frac{\partial}{\partial u_j^{\alpha}} + B_{j\alpha}^{l,i} \frac{\partial}{\partial p_{l,j}^{\alpha}} + C_j \frac{\partial}{\partial p} \right) \otimes dx^i. \]

After some computation...
Solving the dynamical equation

... we finally obtain:

\[B_{\alpha j}^j = \frac{\partial L}{\partial u_{\alpha j}}; \]
\[\sum_{l+1_i=J} p_{\alpha}^{l,i} = \frac{\partial L}{\partial u_{\alpha j}} - B_{\alpha j}^j, \text{ where } |J| = 1, \ldots, k - 1; \]
\[\sum_{l+1_i=K} p_{\alpha}^{l,i} = \frac{\partial L}{\partial u_{\alpha K}}, \text{ where } |K| = k; \]
\[A_{\alpha i}^i = u_{\alpha i}^{l+1}, \text{ where } |l| = 0, \ldots, k - 1. \]

Adding the condition \(H(w) = 0 \) (\(p = L - p^{l,i} u_{l+1_i} \)), we define

\[W_2 := \{ w \in W_1 : H(w) = 0 \} = \{ w \in W : (3) \text{ and } H(w) = 0 \}. \]
Framework

\[W = J^k\pi \times J^{k-1}\pi J^k\pi^\dagger \]

\[W_2 = \left\{ w \in W : \sum_{l+1, i=K} p^{l,i}_\alpha = \frac{\partial L}{\partial u^K_\alpha}, \quad p = L - p^{l,i} u_{l+1,i} \right\} \]
Tangency conditions

\[W_2 := \{ w \in W_1 : H(w) = 0 \} = \{ w \in W : (3) \text{ and } H(w) = 0 \} \]

Now, we have to guarantee that the solutions are tangent to \(W_2 \), that is
that \(h(T_w W) \subset i_\ast(TW_2) \forall w \in W_2 \), which is equivalent to the following equations

\[
\sum_{l+1_i=K} B_{\alpha j}^{li} = \frac{\partial^2 L}{\partial x^i \partial u^\alpha_K} + u_{l+1_j}^\beta \frac{\partial^2 L}{\partial u^\beta_l \partial u^\alpha_K} + A_{K'j}^{\alpha'} \frac{\partial^2 L}{\partial u^{\alpha'}_{K'} \partial u^\alpha_K}, \tag{4}
\]

\[
C_j = \frac{\partial L}{\partial x^j} + A_{j}^{\alpha} \frac{\partial L}{\partial u^{\alpha_j}} + A_{l+1_i j}^{\alpha} p_{\alpha}^{l,i} + B_{\alpha j}^{li} u_{l+1_i}^{\alpha}.
\]

where \(|K| = k \).
The higher-order Euler-Lagrange equations

Let consider an Ehresmann connexion in $\pi_{WM} : W \longrightarrow M$ along W_2 whose horizontal projector \mathbf{h} is a solution of the dynamical equation

$$i_\mathbf{h} \Omega_H = (m - 1)\Omega_H.$$

Theorem

Let σ be a section of $\pi_{W_2M} : W_2 \longrightarrow M$ and denote $\bar{\sigma} = i \circ \sigma$ and $\phi = \pi_{W_2E} \circ \sigma$. If σ is an integral section of \mathbf{h}, then σ is holonomic,

$$pr_1 \circ \bar{\sigma} = j^k \phi,$$

and satisfies the higher-order Euler-Lagrange equations:

$$j^{2k} \phi^* \left(\sum_{|J|=0}^{k} (-1)^{|J|} \frac{d^{|J|}}{dx^J} \frac{\partial L}{\partial u^\alpha_J} \right) = 0.$$
Some results

Theorem

Let Γ be a connexion in $\pi_{WM} : W \to M$ along W_2 whose horizontal projector h satisfies

$$i_h \Omega_H = (m - 1) \Omega_H.$$

The integral sections of Γ satisfy the DeDonder equations.

Theorem

(W_2, Ω_2) is multisymplectic iff L is regular ($\det \left(\frac{\partial^2 L}{\partial u_\alpha^K \partial u_\alpha'^{K'}} \right) \neq 0$).
Some results

Consider the equations in which appear B^l_j's with $|l| = k - 1$ (equations (2) y (4)),

$$B^l_j = \frac{\partial L}{\partial u^\alpha_j} - \sum_{l+1_i=J} p^{l,i}_{\alpha},$$

where $|J| = k - 1$;

$$\sum_{l+1_i=K} B_{\alpha j} = \frac{\partial^2 L}{\partial x^j \partial u^\alpha_K} + u^\beta_{l+1_j} \frac{\partial^2 L}{\partial u^\beta_l \partial u^\alpha_K} + A_{K'j}^{\alpha'} \frac{\partial^2 L}{\partial u^{\alpha'}_{K'} \partial u^\alpha_K},$$

where $|K| = k$.

This is a linear system of equations in the B's which is

- overdetermined when $k = 1$ or $m = 1$,
- completely determined when $k = m = 2$,
- not determined otherwise.

Theorem

If $k, m \geq 2$, the above system has maximal rank.
Some results

Theorem

If $k, m \geq 2$, the above system has maximal rank.

Case $k = 2$ and $m = 3$: 11 equations with 12 unknowns.

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

Case $k = 5$ and $m = 6$: 1638 equations with 4536 unknowns.
Order of the day

1. Introduction

2. The Skinner-Rusk formalism in CFT

3. The Skinner-Rusk formalism in HOFT

4. Vakonomic constraints
Introducing constraints

- The Lagrangian function $L : J^k \pi \longrightarrow \mathbb{R}$.
- The constraint submanifold $C = \{ \psi^\mu = 0 \} \hookrightarrow J^k \pi$, $1 \leq \mu \leq l$.
- The mixed space $W = J^k \pi \times J^{k-1} \pi \cdot J^{k \pi \dagger}$.
- The restricted mixed space $W^C_0 = \{ w \in \text{pr}_1^{-1}(C) : H(w) = 0 \}$.

Theorem

Given $w \in W^C_0$ and $X \in \Lambda^m_d(T_w W^C_0)$, let $\bar{X} = i_* X \in \Lambda^m_d(T_w W)$. We have

$$i_X \Omega^C_0 = 0 \iff i_{\bar{X}} \Omega \in T^0_w W^C_0,$$

where $T^0_w W^C_0$ is the annihilator of $i_* (T_w W^C_0)$ in $T_w W$.

We look for solutions of the equation

$$(-1)^m i_{\bar{X}} \Omega = \lambda_\mu d\psi^\mu + \lambda dH,$$

with $i_{\bar{X}} \eta = 1$.
Solving the vakonomic dynamical equation

Let \(\bar{X} = \bigwedge_j \left(\frac{\partial}{\partial x^j} + A^\alpha_{ji} \frac{\partial}{\partial u^\alpha_j} + B^l_{\alpha j} \frac{\partial}{\partial p^l_{\alpha j}} + C_j \frac{\partial}{\partial p} \right) \). We obtain that \(\lambda = -1 \), besides the relations of holonomy, dynamics and tangency

\[
\begin{align*}
A^\alpha_{i i} & = u^\alpha_{i+1, i} \\
0 & = \lambda \frac{\partial \psi^\mu}{\partial u^\alpha} + \frac{\partial L}{\partial u^\alpha} - B^j_{\alpha j}, \ |J| = 0 \\
\sum_{l+1, i = J} p^l_{\alpha i} & = \lambda \frac{\partial \psi^\mu}{\partial u^\alpha_j} + \frac{\partial L}{\partial u^\alpha_j} - B^j_{\alpha j}, \ |J| = 1, \ldots, k - 1 \\
\sum_{l+1, i = K} p^l_{\alpha i} & = \lambda \frac{\partial \psi^\mu}{\partial u^\alpha_k} + \frac{\partial L}{\partial u^\alpha_k}, \ |K| = k \\
C_i & = \lambda \left(\frac{\partial \psi^\mu}{\partial x^i} + A^\alpha_{i i} \frac{\partial \psi^\mu}{\partial u^\alpha_i} \right) + \frac{\partial L}{\partial x^i} + A^\alpha_{i i} \frac{\partial L}{\partial u^\alpha_i} + \ldots
\end{align*}
\]
Getting rid of the constraints

Suppose that the constraints are of maximal order, $\Psi^\mu = u^\alpha_{\hat{K}} - \Phi^\alpha_{\hat{K}} = 0$. With a right manipulation on the relations of dynamics, we obtain

$$0 + \sum_{l+1_i=\hat{K}} p^l_\beta \frac{\partial \Phi^\beta_{\hat{K}}}{\partial u^\alpha} = \frac{\partial \tilde{L}}{\partial u^\alpha} - B^j_{\alpha j}, \ |J| = 0$$

$$\sum_{l+1_i=J} p^l_\alpha + \sum_{l+1_i=\hat{K}} p^l_\beta \frac{\partial \Phi^\beta_{\hat{K}}}{\partial u^\alpha_j} = \frac{\partial \tilde{L}}{\partial u^\alpha_j} - B^{jj}_{\alpha j}, \ |J| = 1, \ldots, k - 1$$

$$\sum_{l+1_i=\bar{K}} p^l_\alpha + \sum_{l+1_i=\hat{K}} p^l_\beta \frac{\partial \Phi^\beta_{\hat{K}}}{\partial u^\alpha_{\bar{K}}} = \frac{\partial \tilde{L}}{\partial u^\alpha_{\bar{K}}}, \ |\bar{K}| = k$$

where \tilde{L} is the restricted Lagrangian.
Getting rid of the constraints

More generally, if $\Psi^\mu = u^\mu - \Phi^\mu = 0$, with a right manipulation on the relations of dynamics, we obtain

$$
\sum_{\nu+1_i=\bar{\mu}} p_\nu + \sum_{\nu+1_i=\mu} p_\nu \frac{\partial \Phi^\mu}{\partial u^{\bar{\mu}}} = \frac{\partial \tilde{L}}{\partial u^{\bar{\mu}}} + \frac{\partial L}{\partial u^\mu} \frac{\partial \Phi^\mu}{\partial u^{\bar{\mu}}} - B^j_{\bar{\mu}j} - B^j_{\mu j} \frac{\partial \Phi^\mu}{\partial u^{\bar{\mu}}},
$$

where \tilde{L} is the restricted Lagrangian.
What we left behind and what is ahead

Conclusions:

- Global framework for field theory.
- There is no well defined Legendre transform or Cartan form.
- The reduction algorithm stops inevitably.
- The cases $k = 1$ (first order), $m = 1$ (mechanics) and $k = m = 2$ are special.

Future work:

- Control.
- Geometric discretization and integration.
- Space plus time decomposition.
- Jets of infinite dimension, $J^\infty \pi$.
D. J. Saunders.
The geometry of jet bundles.

C. M. Campos, M. de León, D. Martín de Diego, J. Vankerschaver.
Unambiguous formalism for higher-order Lagrangian field theories

On the multisymplectic formalism for first order field theories

J. Cortés, M. de León, D. Martín de Diego and S. Martínez.
Geometric description of vakonomic and nonholonomic dynamics
Lagrangian-Hamiltonian unified formalism for field theory.

Mark J. Gotay, James M. Nester, and George Hinds.
Presymplectic manifolds and the Dirac-Bergmann theory of constraints.

X. Gràcia, J. M. Pons, and N. Román-Roy.
Higher-order Lagrangian systems: geometric structures, dynamics, and constraints
M. de León, J. C. Marrero, and D. Martín de Diego.
A new geometric setting for classical field theories.

D. J. Saunders and M. Crampin.
On the Legendre map in higher-order field theories

Ray Skinner and Raymond Rusk.
*Generalized Hamiltonian dynamics. I. Formulation on $T^*Q \oplus TQ$.*

L. Vitagliano.
The Lagrangian-Hamiltonian formalism for higher order field theories
In the end

- Yes, we can.
 (Barack Obama)

- ... do so may things. What are we waiting for?

Thank you for your attention and for your votes!