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The Liouville equation

Consider the following classical nonlinear problem:

Au+ f(u) =0 inR2 ={(s,¢) e R*: ¢ > 0},

ou
A g(u) on ORZ.
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The Liouville equation

Consider the following classical nonlinear problem:
Au+ f(u) =0 inR2 ={(s,¢) e R*: ¢ > 0},
0
a—? = Ji@) on ORZ.

Here, we will make the following choices:
Au+2Ke" =0 inR%,

b (R
a:—Qne“/Q on 0R2 =R, K,k €R.

The equation Au + 2Ke" = 0 is called the Liouville equation.
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Geometrical interpretation

A conformal metric ds* = e“(dz*+dy?) on a planar domain  C R?

satisfies
Au+ 2Ke" =0,

where K is the Gaussian curvature of ds?.

The Liouville equation describes conformal metrics of constant cur-
vature K on planar domains.
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Geometrical interpretation

A conformal metric ds* = e“(dz*+dy?) on a planar domain  C R?
satisfies
Au+ 2Ke" =0,

where K is the Gaussian curvature of ds?.

The Liouville equation describes conformal metrics of constant cur-
vature K on planar domains.

NOTE: the Liouville equation is conformally invariant: if u is a so-
lution and ® is a regular conformal map on R?, then u o ® is also a
solution.
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Geometrical interpretation

A conformal metric ds* = e“(dx? + dy?) on a planar domain ) C R®
satisfies
Au+ 2Ke" =0,

where K is the Gaussian curvature of ds?.

The Liouville equation describes conformal metrics of constant cur-
vature K on planar domains.

NOTE: the Liouville equation is conformally invariant: if u is a so-
lution and ® is a regular conformal map on R?, then u o ® is also a
solution.

The boundary condition u; = —2ke/? on R = 9R? means that ds?
has constant geodesic curvature Kk € R on the boundary.
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The half-plane problem

+[~J

constant curvature /i

% R

constant geodesic curvature x

<4 4« > | A D> ON¥HN B O



Previous results

(1) Y.Y. Li, M. Zhu (1995): Any solution to (P) for K = 1 with

/ e’ < 400, /e“/2<+oo
R R

2
oL

is a canonical solution.
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Previous results

(1) Y.Y. Li, M. Zhu (1995): Any solution to (P) for K = 1 with

/ e’ < 400, /e“/2<+oo
R R

2
+
is a canonical solution.

(2) Zhang (2003): Removes K = 1 and the finite length condition
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Previous results

(1) Y.Y. Li, M. Zhu (1995): Any solution to (P) for K = 1 with
/ e’ < 400, /e“/2<+oo
R2 R
is a canonical solution.

(2) Zhang (2003): Removes K = 1 and the finite length condition

(3) Y.Y. Li, M. Zhu (1995), and Chipot-Shafir-Fila (1996): Any
solution to

n+2 .
a2 — (0, >0, in R7Y,
ou o

- -3 n
= cur—2 on OR $
ox,,

is a canonical solution.
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Our objectives...

(1) To solve problem (P) without additional hypotheses.
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Our objectives...

(1) To solve problem (P) without additional hypotheses.

(I1) To solve the analogous problem in D*:

Au+2Ke*=0 inD*={zeR?=C:0<|z| <1},
ou

S o /2 +2 onS'= {Z : \Z| N 1}~
ov

D*
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Other related theories

e Complex analysis.

Minimal surfaces in R? and maximal surfaces in 5.

Constant mean curvature surfaces in H® and S3.

Flat surfaces in H3 and S3.

Linear Weingarten surfaces.
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The Neumann problem in Ri



The Liouville equation and complex analysis

We fix K € {—1,1} and identify C = R? and C, = R?.
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The Liouville equation and complex analysis

We fix K € {—1,1} and identify C = R? and C; = R2.

Liouville’s theorem:

Solutions to Au 4+ 2Ke" = 0 on €2 C C simply connected are:
4lg'”

(1+ K|g*)*

u = log

Here g is meromorphic (holomorphic with |g| < 1 if K = —1) with
g # 0 (and conversely).

Note: the developing map g gives a global isometric immersion of
(22, €%|dz|?) into Q*(K).
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The extension lemma

Let v be a solution to
Au+2Ke"=0 inR%,
ou
ot

Then it holds

1 2 g// / 1 g// 2
e e — <?> N (y) (=: @)

By the boundary condition, Im() = 0 on R.

(P)
= 9ke®2  on OR2 =R, K,sx€eR.

By Schwarz's reflection principle, () (and g) can be meromorphically
extended to C.
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The Cauchy problem for Au +2Ke" =0

The unique solution to the Cauchy problem

Au—+2Ke" = 0,
u(s,0) = G
u (s, 0) — \difsy

can be constructed as follows.
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The Cauchy problem for Au +2Ke" =0

The unique solution to the Cauchy problem

Au+2Ke* = 0,
u(s,0) = G
u (s, 0) — \difsy

can be constructed as follows.Let a(s) be the unique curve in Q?(K)

with d( )
e a(r)/2 N
s = /e dr, Kg(S) = > Ak

Let g(s) := m(a(s)) denote its stereographic projection on C, and
extend it holomorphically to g(z). Then,

4lg'”
RN g]2)°

u = log
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The Cauchy problem for Au +2Ke" =0

The unique solution to the Cauchy problem

Au—+2Ke" = 0,

u(s, 0) = af(s),

u (s, 0) — \difsy
can be constructed as follows. Let a(s) be the unique curve in Q?(K)
with

—d(s)

N a(r)/2 2N

Bl — /e dr, Kg(s) = a2

If u;(s,0) = —2ke"*Y/2, then k,(s) = k = constant !!!
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The solution for K =1

Let u : Cy — R be a solution to (P) for K = 1. Then, its developing
map g is, over R, of the form

6(s) = aexp (z' j su(?“)dr> ,

where
sg(k) 9 a(s)/2
— ) s):=sg(k)VK+1e .
E p(s) = sg(k) V

By the properties of g we see that h(s) := 1/u(s) satisfies:
e h(s) # 0 and it can be extended to an entire function h(z).
e h(2) only has simple zeros with h'(zp) = 4 at them.

(And conversely...)
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The solution for XK = —1 and sk > 1

If K > 1 = similar to K = 1.
If K =1, then ¢(C,) C D and

ala) = h(h(S) h(s) := /S e/ 2y, a(s) :=uf(s,0)

N
&
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The solution for XK = —1 and sk > 1

If K > 1 = similarto K = 1.

If Kk =1, then g(C,) C D and

h(s) := /S e/ 2y, a(s) = u(s,0)

50

g(s) = m,

h(s) extends to C with h(C,) C C; and h(C_) C C_.

By the little Picard theorem, h(z) = hg z + hy and so

il ) (%) .
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K = —1 and |k| < 1 is impossible

by
NI
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K = -1 and k < —1 is impossible

N
E
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K = -1 and k < —1 is impossible

o @
E
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To sum up

We have obtained for the problem

Au+2Ke* =0 in Ri,

9 (P)

@_;L = —2xe“?  on GR%F = R.
o If K = —1and kK <1 = the problem does not have a solution.
e If K = —1 and k = 1 = the unique solution is

e ) (%) |

e In the remaining cases = there is an enormous family of solu-
tions, all of which can be described by entire functions.
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The punctured disc problem



Formulation of the problem

Au—+2Ke* =0 in D, (PDP)
?:_256“/2—|—2 onS!, K,k eR.
v
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Reduction to the half-plane case

(@ D*

1z
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Reduction to the half-plane case

(o D*

e Solutions to (PDP) come from 27-periodic solutions to (P).

e In particular, (PDP) does not have a solution for K = —1 and
Kk < 1.
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Reduction to the half-plane case

(o D*

e Solutions to (PDP) come from 27-periodic solutions to (P).

e In particular, (PDP) does not have a solution for K = —1 and
Kk <1.

What are the finite area solutions to this problem?
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The finite area case

Theorem: Any solution to (PDP) such that

/e“<oo

is radially symmetric, i.e. u = u(r) where r = |z|.
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The finite area case

Theorem: Any solution to (PDP) such that

/e“<oo

is radially symmetric, i.e. u = u(r) where r = |z|.
Moreover, all solutions can be explicitly given by simple expressions.

For instance, if K =1 and k > 0, then

2R5rﬁ_1
i — 2 log T4 B2
where

= 1

e k|
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Sketch of proof: the solution u on D* is

416" (917
1 +1GP)*

e )" :={G,(} is holomorphic on D*, and

u = log G(¢) multivalued on C.
Im(¢*Q*) =0 on S'.

e G(¢) = C“F(C), F single valued on C*. By the finite area
assumption, F' is meromorphic at 0 (Chou-Wan, 1994).

e Q* =1ry/¢? and so G(¢) = M(¢P).

e By |G(¢)] = R on S', then M(¢) = Re®( and the result
follows.
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An open problem



The half-plane problem with corners

R 2
constant curvature /i +

]

o
kg = Ch [ g = Ca R

conical singularity

Jost, Wang, Zhou = Classification for K = 1 when

/ e < 00, /e“/2<oo.
R R

2
+
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