

Entire maximal graphs

Worskshop of Geometry and Physics, Benasque 2009

Isabel Fernandez

Universidad de Sevilla

Entire maximal graphs- p. 2/17

•
$$\mathbb{L}^3 = (\mathbb{R}^3, ds^2 = dx^2 + dy^2 - dt^2)$$
 Lorentz-Minkowski space.

- $S \subset \mathbb{L}^3$ is a maximal surface if it is spacelike and is critical for the area.

- $S \subset \mathbb{L}^3$ is a maximal surface if it is spacelike and is critical for the area.
 - spacelike = the induced metric is Riemannian

- $S \subset \mathbb{L}^3$ is a maximal surface if it is spacelike and is critical for the area.
 - critical for the area = for any 1-parameter deformation of S, the derivative of the area is zero.

Equivalently, the mean curvature is zero.

- $S \subset \mathbb{L}^3$ is a maximal surface if it is spacelike and is critical for the area.

- $S \subset \mathbb{L}^3$ is a maximal surface if it is spacelike and is critical for the area.
- If S is the graph of a smooth function f, then S is maximal iff

$$\mathsf{Div}\Big(\frac{\nabla f}{\sqrt{1-|\nabla f|^2}}\Big) = 0, \qquad |\nabla f| < 1$$

- $S \subset \mathbb{L}^3$ is a maximal surface if it is spacelike and is critical for the area.
- If S is the graph of a smooth function f, then S is maximal iff

$$\mathsf{Div}\Big(\frac{\nabla f}{\sqrt{1-|\nabla f|^2}}\Big) = 0, \qquad |\nabla f| < 1$$

Our aim: To study entire maximal graphs.
 (entire graph = defined on the whole plane).

Calabi, '70: The only complete maximal surface is the plane. In particular, there are no non-trivial entire maximal graphs.

Entire maximal graphs- p. 4/17

- Calabi, '70: The only complete maximal surface is the plane. In particular, there are no non-trivial entire maximal graphs.
- → Complete maximal surfaces have singularities (points where the metric degenerates).

- Calabi, '70: The only complete maximal surface is the plane. In particular, there are no non-trivial entire maximal graphs.
- → Complete maximal surfaces have singularities (points where the metric degenerates).

- Calabi, '70: The only complete maximal surface is the plane. In particular, there are no non-trivial entire maximal graphs.
- → Complete maximal surfaces have singularities (points where the metric degenerates).
- Our (new) aim: Study entire maximal graphs with the smallest set of singularities (a finite number of points).

Singularities of maximal surfaces

There are different types of singularities.

Singularities of maximal surfaces

- There are different types of singularities.
- Isolated singularities

Singularities of maximal surfaces

- There are different types of singularities.
- Isolated singularities

Isolated embedded singularities \equiv conelike singularities

Local behavior:

Entire maximal graphs- p. 6/17

Solution Local behavior: S maximal graph of a function f with a singular point, then

- the normal vector becomes lightlike,
- Ithe surface is asymptotic to half of the light cone at the singularity.

D Local behavior: S maximal graph of a function f with a singular point, then

- the normal vector becomes lightlike,
- Ithe surface is asymptotic to half of the light cone at the singularity.
- Global behavior:

D Local behavior: S maximal graph of a function f with a singular point, then

- $|\nabla f| \rightarrow 1$ at the singularity,
- the normal vector becomes lightlike,
- Ithe surface is asymptotic to half of the light cone at the singularity.
- Solution Global behavior: Let $S \subset \mathbb{L}^3$ be a maximal surface with a finite number of singular points. Are equivalent:
 - \checkmark *S* is complete and embedded.
 - \checkmark S is complete and its singularities are of conelike type.
 - \mathcal{S} is an entire maximal graph.

Moreover, S is asymptotic at infinity to either a half catenoid or a plane.

Entire graphs with a finite set of singularities

Entire maximal graphs- p. 7/17

A parametrization X : Ω ⊂ C → S ⊂ L³ is conformal if preserves the angles.

If $X(\Omega) = S$, Ω is said to be the conformal structure of the surface S.

- A parametrization X : Ω ⊂ C → S ⊂ L³ is conformal if preserves the angles.
 If X(Ω) = S, Ω is said to be the conformal structure of the surface S.
- The conformal structure of entire maximal graphs with n + 1 singularities is a *n*-connected circular domain

$$\Omega = \mathbb{C} \setminus \bigcup_{j=1}^{n+1} D_j, \qquad D_j = \text{disjoint open disks}$$

A parametrization $X : \Omega \subset \mathbb{C} \to S \subset \mathbb{L}^3$ is conformal if preserves the angles. If $Y(\Omega) = S$, Ω is said to be the conformal structure of the surface S.

If $X(\Omega) = S$, Ω is said to be the conformal structure of the surface S.

The conformal structure of entire maximal graphs with n + 1 singularities is a *n*-connected circular domain

$$\Omega = \mathbb{C} \setminus \bigcup_{j=1}^{n+1} D_j, \qquad D_j = \text{disjoint open disks}$$

A parametrization $X : \Omega \subset \mathbb{C} \to S \subset \mathbb{L}^3$ is conformal if preserves the angles. If $Y(\Omega) = S$, Ω is said to be the conformal structure of the surface S.

If $X(\Omega) = S$, Ω is said to be the conformal structure of the surface S.

The conformal structure of entire maximal graphs with n + 1 singularities is a *n*-connected circular domain

$$\Omega = \mathbb{C} \setminus \bigcup_{j=1}^{n+1} D_j, \qquad D_j = \text{disjoint open disks}$$

- A parametrization X : Ω ⊂ C → S ⊂ L³ is conformal if preserves the angles.
 If X(Ω) = S, Ω is said to be the conformal structure of the surface S.
- The conformal structure of entire maximal graphs with n + 1 singularities is a *n*-connected circular domain

$$\Omega = \mathbb{C} \setminus \bigcup_{j=1}^{n+1} D_j, \qquad D_j = \text{disjoint open disks}$$

A parametrization $X : \Omega \subset \mathbb{C} \to S \subset \mathbb{L}^3$ is conformal if preserves the angles. If $Y(\Omega) = S$, Ω is said to be the conformal structure of the surface S.

If $X(\Omega) = S$, Ω is said to be the conformal structure of the surface S.

The conformal structure of entire maximal graphs with n + 1 singularities is a *n*-connected circular domain

$$\Omega = \mathbb{C} \setminus \bigcup_{j=1}^{n+1} D_j, \qquad D_j = \text{disjoint open disks}$$

Our (re-new) aim: Does the conformal structure determine the surface?

Problem:

Given a *n*-connected circular domain Ω , how many different entire maximal graphs are there with this conformal structure?

Problem:

Given a *n*-connected circular domain Ω , how many different entire maximal graphs are there with this conformal structure?

Answer [-,09]:

For any *n*-connected circular domain there exist exactly 2^n entire maximal graphs (with n + 1 singularities) with this conformal structure.

Problem:

Given a *n*-connected circular domain Ω , how many different entire maximal graphs are there with this conformal structure?

Answer [-,09]:

For any *n*-connected circular domain there exist exactly 2^n entire maximal graphs (with n + 1 singularities) with this conformal structure.

Proof: Two steps

Problem:

Given a *n*-connected circular domain Ω , how many different entire maximal graphs are there with this conformal structure?

Answer [-,09]:

For any *n*-connected circular domain there exist exactly 2^n entire maximal graphs (with n + 1 singularities) with this conformal structure.

Proof: Two steps

1. This number only depends on n.

Problem:

Given a *n*-connected circular domain Ω , how many different entire maximal graphs are there with this conformal structure?

Answer [-,09]:

For any *n*-connected circular domain there exist exactly 2^n entire maximal graphs (with n + 1 singularities) with this conformal structure.

Proof: Two steps

- 1. This number only depends on n.
- 2. Compute this number for a specific circular domain.

Outline of the proof

Entire maximal graphs- p. 10/17

$$X(z) = \mathsf{Re} \int_{z_0}^{z} \left(\frac{i}{2}(\frac{1}{g} - g), \frac{-1}{2}(\frac{1}{g} + g), 1\right) \phi_3,$$

 \bullet ϕ_3 is a holomorphic 1-form ($\phi_3 = f(z)dz$), and

 \square g is a meromorphic function that agrees with the Gauss map of the surface:

$$X(z) = \operatorname{\mathsf{Re}} \int_{z_0}^{z} \left(\frac{i}{2}(\frac{1}{g} - g), \frac{-1}{2}(\frac{1}{g} + g), 1\right) \phi_3,$$

- $\oint \phi_3$ is a holomorphic 1-form ($\phi_3 = f(z)dz$), and
- \square g is a meromorphic function that agrees with the Gauss map of the surface:

$$X(z) = \mathsf{Re} \int_{z_0}^{z} \left(\frac{i}{2}(\frac{1}{g} - g), \frac{-1}{2}(\frac{1}{g} + g), 1\right) \phi_3,$$

 $\oint \phi_3$ is a holomorphic 1-form ($\phi_3 = f(z)dz$), and

 \square g is a meromorphic function that agrees with the Gauss map of the surface:

$$X(z) = \operatorname{\mathsf{Re}} \int_{z_0}^{z} \left(\frac{i}{2}(\frac{1}{g} - g), \frac{-1}{2}(\frac{1}{g} + g), 1\right) \phi_3,$$

- $\oint \phi_3$ is a holomorphic 1-form ($\phi_3 = f(z)dz$), and
- \square g is a meromorphic function that agrees with the Gauss map of the surface:

For surfaces with (conelike) singularities...

The Weierstrass data of an entire maximal graph with n + 1 singularities extend to a compact genus n Riemann surface (called the double surface)

satisfying $g \circ J = 1/\overline{g}$, and $J^*(\phi_3) = -\overline{\phi_3}$.

Theorem [–,09]: For each *n*-connected circular domain there are exactly 2^n entire maximal graphs (with n + 1 singularities) with this conformal structure.

- Step 1: The number of conformally equivalent maximal graphs does not depend on the circular domain, but only on the number of singularities.
- Step 2: For each *n*, there exists a *n*-connected circular domain Ω_n , such that the number of maximal graphs conformally equivalent to Ω_n is exactly 2^n .

Step 1: The number of conformally equivalent graphs depends only on the number of singularities.

Step 1: The number of conformally equivalent graphs depends only on the number of singularities.

- Fix *n*. To each entire maximal graph *S* with n + 1 singularities, we assign an upla (v, D), where

 - **\square** is the set of zeroes of g in Ω .

To avoid congruences we will assume $c_0 = 0, r_0 = 1, c_1 \in \mathbb{R}^+$.

Step 1: The number of conformally equivalent graphs depends only on the number of singularities.

- Fix *n*. To each entire maximal graph *S* with n + 1 singularities, we assign an upla (v, D), where

 - **\square** is the set of zeroes of g in Ω .

To avoid congruences we will assume $c_0 = 0, r_0 = 1, c_1 \in \mathbb{R}^+$.

■ Theorem [–, Lopez, Souam]: The above defined map $S \mapsto (v, D)$ is a bijection. Moreover, $(v, D) \mapsto v$ is a finitely-sheeted covering.

Proof: Step 1

Theorem:

The above defined map $\mathcal{S} \mapsto (v, D)$ is a bijection. Moreover, $(v, D) \mapsto v$ is a finitely-sheeted covering.

Proof: Step 1

Theorem:

The above defined map $\mathcal{S} \mapsto (v, D)$ is a bijection. Moreover, $(v, D) \mapsto v$ is a finitely-sheeted covering.

Corollary: The number of preimages of the map

 $\mathcal{S} \equiv (v, D) \mapsto v \equiv \text{conf. estruct.}$

is a universal constant (only depending on n).

Proof: Step 1

Theorem:

The above defined map $\mathcal{S} \mapsto (v, D)$ is a bijection. Moreover, $(v, D) \mapsto v$ is a finitely-sheeted covering.

Corollary: The number of preimages of the map

 $\mathcal{S} \equiv (v, D) \mapsto v \equiv \text{conf. estruct.}$

is a universal constant (only depending on n).

Step 1: The number of conformally equivalent graphs depends only on the number of singularities $\rightsquigarrow \checkmark$.

Solution We fix a circular domain Ω_n (depending on $a_1 < \ldots < a_{2n+2} \in \mathbb{R}$)

Solution We fix a circular domain Ω_n (depending on $a_1 < \ldots < a_{2n+2} \in \mathbb{R}$)

$$N = \{ (z, w) \in \overline{\mathbb{C}} \times \overline{\mathbb{C}} : w^2 = \prod_{j=1}^{2n+2} (z - a_j) \}$$

Solution We fix a circular domain Ω_n (depending on $a_1 < \ldots < a_{2n+2} \in \mathbb{R}$)

- \blacksquare We fix a circular domain Ω_n (depending on $a_1 < \ldots < a_{2n+2} \in \mathbb{R}$)
- Solution We prove that any maximal surface conformally equivalent to Ω_n must have Weierstrass data of the form

$$g = \frac{w + P(z)}{w - P(z)} \quad \phi_3 = \left(\frac{w}{P(z)} - \frac{P(z)}{w}\right) dz^2,$$

where $P(z) = \prod_{j=1}^{n+1} (z - b_j), b_j \in \{a_{2j-1}, a_{2j}\}.$

- \blacksquare We fix a circular domain Ω_n (depending on $a_1 < \ldots < a_{2n+2} \in \mathbb{R}$)
- Solution We prove that any maximal surface conformally equivalent to Ω_n must have Weierstrass data of the form

$$g = \frac{w + P(z)}{w - P(z)} \quad \phi_3 = \left(\frac{w}{P(z)} - \frac{P(z)}{w}\right) dz^2,$$

where $P(z) = \prod_{j=1}^{n+1} (z - b_j), b_j \in \{a_{2j-1}, a_{2j}\}.$

- The above data provides congruent surfaces if and only if the sets of $b_j's$ are complementary. Therefore we can assume $b_1 = a_1$.
- If thus, the number of possible choices of b_2, \ldots, b_{n+1} is 2^n .

The end... Thank you!

Entire maximal graphs- p. 17/17