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Maximal surfaces

L
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Maximal surfaces

L
3 = (R3, ds2 = dx2 + dy2 − dt2) Lorentz-Minkowski space.

S ⊂ L
3 is a maximal surface if it is spacelike and is critical for the area.

spacelike = the induced metric is Riemannian

Entire maximal graphs– p. 3/17



Maximal surfaces

L
3 = (R3, ds2 = dx2 + dy2 − dt2) Lorentz-Minkowski space.

S ⊂ L
3 is a maximal surface if it is spacelike and is critical for the area.

critical for the area = for any 1-parameter deformation of S, the

derivative of the area is zero.

Equivalently, the mean curvature is zero.
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Maximal surfaces

L
3 = (R3, ds2 = dx2 + dy2 − dt2) Lorentz-Minkowski space.

S ⊂ L
3 is a maximal surface if it is spacelike and is critical for the area.

If S is the graph of a smooth function f , then S is maximal iff

Div
( ∇f

√

1 − |∇f |2

)

= 0, |∇f | < 1
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Maximal surfaces

L
3 = (R3, ds2 = dx2 + dy2 − dt2) Lorentz-Minkowski space.

S ⊂ L
3 is a maximal surface if it is spacelike and is critical for the area.

If S is the graph of a smooth function f , then S is maximal iff

Div
( ∇f

√

1 − |∇f |2

)

= 0, |∇f | < 1

Our aim: To study entire maximal graphs.
(entire graph = defined on the whole plane).
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General facts

Calabi, ’70: The only complete maximal surface is the plane.

In particular, there are no non-trivial entire maximal graphs.
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General facts

Calabi, ’70: The only complete maximal surface is the plane.

In particular, there are no non-trivial entire maximal graphs.

 Complete maximal surfaces have singularities (points where the metric
degenerates).

Our (new) aim: Study entire maximal graphs with the smallest set of

singularities (a finite number of points).
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Singularities of maximal surfaces

There are different types of singularities.
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Singularities of maximal surfaces

There are different types of singularities.

Isolated singularities
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Singularities of maximal surfaces

There are different types of singularities.

Isolated singularities

Isolated embedded singularities ≡ conelike singularities
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Conelike singularities

Local behavior:
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Conelike singularities

Local behavior: S maximal graph of a function f with a singular point, then

|∇f | → 1 at the singularity,

the normal vector becomes lightlike,

the surface is asymptotic to half of the light cone at the singularity.
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Conelike singularities

Local behavior: S maximal graph of a function f with a singular point, then

|∇f | → 1 at the singularity,

the normal vector becomes lightlike,

the surface is asymptotic to half of the light cone at the singularity.

Global behavior: Let S ⊂ L
3 be a maximal surface with a finite number of

singular points. Are equivalent:

S is complete and embedded.

S is complete and its singularities are of conelike type.

S is an entire maximal graph.

Moreover, S is asymptotic at infinity to either a half catenoid or a plane.
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Entire graphs with a finite set of
singularities
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Conformal parametrizations

A parametrization X : Ω ⊂ C → S ⊂ L
3 is conformal if preserves the

angles.
If X(Ω) = S, Ω is said to be the conformal structure of the surface S.
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angles.
If X(Ω) = S, Ω is said to be the conformal structure of the surface S.

The conformal structure of entire maximal graphs with n + 1 singularities is
a n-connected circular domain

Ω = C \ ∪n+1

j=1 Dj , Dj = disjoint open disks
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Conformal parametrizations

A parametrization X : Ω ⊂ C → S ⊂ L
3 is conformal if preserves the

angles.
If X(Ω) = S, Ω is said to be the conformal structure of the surface S.

The conformal structure of entire maximal graphs with n + 1 singularities is
a n-connected circular domain

Ω = C \ ∪n+1

j=1 Dj , Dj = disjoint open disks

Our (re-new) aim: Does the conformal structure determine the surface?
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Main result

Problem:

Given a n-connected circular domain Ω, how many different entire maximal
graphs are there with this conformal structure?
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Given a n-connected circular domain Ω, how many different entire maximal
graphs are there with this conformal structure?

Answer [–,09]:

For any n-connected circular domain there exist exactly 2n entire maximal
graphs (with n + 1 singularities) with this conformal structure.

Entire maximal graphs– p. 9/17



Main result

Problem:

Given a n-connected circular domain Ω, how many different entire maximal
graphs are there with this conformal structure?

Answer [–,09]:

For any n-connected circular domain there exist exactly 2n entire maximal
graphs (with n + 1 singularities) with this conformal structure.

Proof: Two steps

Entire maximal graphs– p. 9/17



Main result

Problem:

Given a n-connected circular domain Ω, how many different entire maximal
graphs are there with this conformal structure?

Answer [–,09]:

For any n-connected circular domain there exist exactly 2n entire maximal
graphs (with n + 1 singularities) with this conformal structure.

Proof: Two steps

1. This number only depends on n.
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Main result

Problem:

Given a n-connected circular domain Ω, how many different entire maximal
graphs are there with this conformal structure?

Answer [–,09]:

For any n-connected circular domain there exist exactly 2n entire maximal
graphs (with n + 1 singularities) with this conformal structure.

Proof: Two steps

1. This number only depends on n.

2. Compute this number for a specific circular domain.
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Outline of the proof
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Weierstrass data

Let X : U ⊂ C → S ⊂ L
3 a conformal parametrization of a regular maximal

surface. Then X is of the form

X(z) = Re
∫ z

z0

( i

2
(
1

g
− g),

−1

2
(
1

g
+ g), 1

)

φ3,

φ3 is a holomorphic 1-form (φ3 = f(z)dz), and

g is a meromorphic function that agrees with the Gauss map of the surface:
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Weierstrass data II

For surfaces with (conelike) singularities...

The Weierstrass data of an entire maximal graph with n + 1 singularities
extend to a compact genus n Riemann surface (called the double surface)

satisfying g ◦ J = 1/ḡ, and J∗(φ3) = −φ3.
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2 Steps

Theorem [–,09]: For each n-connected circular domain there are exactly 2n

entire maximal graphs (with n + 1 singularities) with this conformal structure.

Step 1: The number of conformally equivalent maximal graphs does not
depend on the circular domain, but only on the number of singularities.

Step 2: For each n, there exists a n-connected circular domain Ωn, such

that the number of maximal graphs conformally equivalent to Ωn is exactly
2n.
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Proof: Step 1

Step 1: The number of conformally equivalent graphs depends only on the number of

singularities.
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Proof: Step 1

Step 1: The number of conformally equivalent graphs depends only on the number of

singularities.

Fix n. To each entire maximal graph S with n + 1 singularities, we assign
an upla (v, D), where

v = (c0, r0, . . . , cn, rn) ∈ R
3n+3 is the sequence of centers and radii of the

circular domain Ω associated to S,

D is the set of zeroes of g in Ω.

To avoid congruences we will assume c0 = 0, r0 = 1, c1 ∈ R
+.
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Proof: Step 1

Step 1: The number of conformally equivalent graphs depends only on the number of

singularities.

Fix n. To each entire maximal graph S with n + 1 singularities, we assign
an upla (v, D), where

v = (c0, r0, . . . , cn, rn) ∈ R
3n+3 is the sequence of centers and radii of the

circular domain Ω associated to S,

D is the set of zeroes of g in Ω.

To avoid congruences we will assume c0 = 0, r0 = 1, c1 ∈ R
+.

Theorem [–, Lopez, Souam]:
The above defined map S 7→ (v, D) is a bijection.

Moreover, (v, D) 7→ v is a finitely-sheeted covering.
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Proof: Step 1

Theorem:
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Proof: Step 1

Theorem:

The above defined map S 7→ (v, D) is a bijection.
Moreover, (v, D) 7→ v is a finitely-sheeted covering.

Corollary: The number of preimages of the map

S ≡ (v, D) 7→ v ≡ conf. estruct.

is a universal constant (only depending on n).
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Proof: Step 1

Theorem:

The above defined map S 7→ (v, D) is a bijection.
Moreover, (v, D) 7→ v is a finitely-sheeted covering.

Corollary: The number of preimages of the map

S ≡ (v, D) 7→ v ≡ conf. estruct.

is a universal constant (only depending on n).

Step 1: The number of conformally equivalent graphs depends only on the number of

singularities X.
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Proof: Step 2

Step 2: For each n, there exists a n-connected circular domain Ωn, such that the number

of maximal graphs conformally equivalent to Ωn is exactly 2n.
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Proof: Step 2

Step 2: For each n, there exists a n-connected circular domain Ωn, such that the number

of maximal graphs conformally equivalent to Ωn is exactly 2n.

We fix a circular domain Ωn (depending on a1 < . . . < a2n+2 ∈ R)
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Proof: Step 2

Step 2: For each n, there exists a n-connected circular domain Ωn, such that the number

of maximal graphs conformally equivalent to Ωn is exactly 2n.

We fix a circular domain Ωn (depending on a1 < . . . < a2n+2 ∈ R)

N = {(z, w) ∈ C̄ × C̄ : w2 =

2n+2
∏

j=1

(z − aj)}
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Proof: Step 2

Step 2: For each n, there exists a n-connected circular domain Ωn, such that the number

of maximal graphs conformally equivalent to Ωn is exactly 2n.

We fix a circular domain Ωn (depending on a1 < . . . < a2n+2 ∈ R)

We prove that any maximal surface conformally equivalent to Ωn must

have Weierstrass data of the form

g =
w + P (z)

w − P (z)
φ3 =

( w

P (z)
−

P (z)

w

)

dz2,

where P (z) =
∏n+1

j=1
(z − bj), bj ∈ {a2j−1, a2j}.
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Proof: Step 2

Step 2: For each n, there exists a n-connected circular domain Ωn, such that the number

of maximal graphs conformally equivalent to Ωn is exactly 2n.

We fix a circular domain Ωn (depending on a1 < . . . < a2n+2 ∈ R)

We prove that any maximal surface conformally equivalent to Ωn must

have Weierstrass data of the form

g =
w + P (z)

w − P (z)
φ3 =

( w

P (z)
−

P (z)

w

)

dz2,

where P (z) =
∏n+1

j=1
(z − bj), bj ∈ {a2j−1, a2j}.

The above data provides congruent surfaces if and only if the sets of bj
′s

are complementary. Therefore we can assume b1 = a1.

Thus, the number of possible choices of b2, . . . , bn+1 is 2n. �
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The end...

Thank you!
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