Branes in Poisson sigma models

Fernando Falceto Depto. Física Teórica Universidad de Zaragoza

Branes in Poisson sigma models

Fernando Falceto Depto. Física Teórica Universidad de Zaragoza

N. Ikeda: Non linear gauge theories, applications to 2d gravity.

- N. Ikeda: Non linear gauge theories, applications to 2d gravity.
- P. Schaller and T. Strobl: put the model into the right geometric setup and coined its name, applications to gravity, BF theory, Yang-Mills...

- N. Ikeda: Non linear gauge theories, applications to 2d gravity.
- P. Schaller and T. Strobl: put the model into the right geometric setup and coined its name, applications to gravity, BF theory, Yang-Mills...
- A. Cattaneo and G. Felder: relation to Kontsevich's deformation quantization, to symplectic groupoids, AKSZ formalism...

- N. Ikeda: Non linear gauge theories, applications to 2d gravity.
- P. Schaller and T. Strobl: put the model into the right geometric setup and coined its name, applications to gravity, BF theory, Yang-Mills...
- A. Cattaneo and G. Felder: relation to Kontsevich's deformation quantization, to symplectic groupoids, AKSZ formalism...
- Cattaneo and Felder: coisotropic branes.

- N. Ikeda: Non linear gauge theories, applications to 2d gravity.
- P. Schaller and T. Strobl: put the model into the right geometric setup and coined its name, applications to gravity, BF theory, Yang-Mills...
- A. Cattaneo and G. Felder: relation to Kontsevich's deformation quantization, to symplectic groupoids, AKSZ formalism...
- Cattaneo and Felder: coisotropic branes.
- More general branes?

Plan

- Poisson sigma model
- Examples
- Boundary conditions
- Quantization
- Final Remarks

Plan

- Poisson sigma model
- Examples
- Boundary conditions
- Quantization
- Final Remarks

With: Iván Calvo David García-Álvarez Krzysztof Gawędzki

- The target: $(M, \{,\})$
- $\{,\}$ a Poisson bracket in $C^{\infty}(M)$.

- The target: $(M, \{ , \})$
- $\{ \ , \ \}$ a Poisson bracket in $C^{\infty}(M)$.
- In coordinates $X = (X^1, \ldots, X^n)$ for M

 $\Pi^{ij}(X) = \{X^i, X^j\}(X)$

- The target: $(M, \{ , \})$ $\Pi^{ij}(X) = \{X^i, X^j\}(X)$
- The fields:
 - Σ two dimensional space-time (worldsheet).
 - The fields are given by the bundle map

$$(X,\eta):T\Sigma\to T^*M$$

i.e. $X: \Sigma \to M$, $\eta \in \Omega^1(\Sigma, X^*T^*M)$

with coordinates $\sigma = (\sigma^1, \sigma^2)$ for Σ

$$\eta = \eta_{\kappa i}(\sigma) \mathrm{d}\sigma^{\kappa} \mathrm{d}X^{i} = \eta_{i} \mathrm{d}X^{i}$$

- The target: $(M, \{ , \})$ $\Pi^{ij}(X) = \{X^i, X^j\}(X)$
- The fields: $X: \Sigma \to M$, $\eta = \eta_{\kappa i}(\sigma) d\sigma^{\kappa} dX^{i} = \eta_{i} dX^{i}$
- The action:

$$S(X,\eta) = \int_{\Sigma} \eta_i \wedge \mathrm{d}X^i + \frac{1}{2} \Pi^{ij}(X) \eta_i \wedge \eta_j$$

- The target: $(M, \{ , \})$ $\Pi^{ij}(X) = \{X^i, X^j\}(X)$
- The fields: $X: \Sigma \to M$, $\eta = \eta_{\kappa i}(\sigma) d\sigma^{\kappa} dX^{i} = \eta_{i} dX^{i}$
- The action:

$$S(X,\eta) = \int_{\Sigma} \eta_i \wedge dX^i + \frac{1}{2} \Pi^{ij}(X) \eta_i \wedge \eta_j$$

The equations of motion:

$$dX - \Pi^{\sharp}(X)\eta = 0 \qquad (\Pi^{\sharp}\eta)^{j} = \Pi^{ij}\eta_{i}$$
$$d\eta_{i} + \frac{1}{2}\partial_{i}\Pi^{jk}(X)\eta_{j} \wedge \eta_{k} = 0$$

i. e. $(X, \eta) : T\Sigma \to T^*M$ Lie algebroid homomorphism.

The Gauge symmetry:

Under the transformations

$$\delta_{\beta} X = \Pi^{\sharp}(X)\beta$$
$$\delta_{\beta} \eta_i = \mathrm{d}\beta_i + \partial_i \Pi^{jk} \eta_j \beta_k,$$

$$\beta = \beta_i(\sigma) \mathrm{d}X^i \in \Gamma(X^*T^*M)$$

The Gauge symmetry:

Under the transformations

 $\delta_{\beta} X = \Pi^{\sharp}(X)\beta \qquad \beta = \beta_{i}(\sigma) dX^{i} \in \Gamma(X^{*}T^{*}M)$ $\delta_{\beta} \eta_{i} = d\beta_{i} + \partial_{i}\Pi^{jk} \eta_{j}\beta_{k},$ $\delta_{\beta} Q = \int_{\Omega} d(dX^{i}\beta)$

$$\delta_{\beta}S = \int_{\Sigma} \mathrm{d}(\mathrm{d}X^{i}\beta_{i}).$$

The Gauge symmetry:

Under the transformations

$$\begin{split} \delta_{\beta} X &= \Pi^{\sharp}(X)\beta \qquad \beta = \beta_{i}(\sigma) dX^{i} \in \Gamma(X^{*}T^{*}M) \\ \delta_{\beta} \eta_{i} &= d\beta_{i} + \partial_{i}\Pi^{jk}\eta_{j}\beta_{k}, \\ \delta_{\beta} S &= \int_{\Sigma} d(dX^{i}\beta_{i}). \\ &[\delta_{\beta}, \delta_{\beta'}]X^{i} = \delta_{[\beta,\beta']}X^{i} \\ &[\delta_{\beta}, \delta_{\beta'}]\eta_{i} = \delta_{[\beta,\beta']}\eta_{i} - \beta_{k}\beta_{l}'\partial_{i}\partial_{j}\Pi^{kl}(dX^{j} - \Pi^{sj}\eta_{s}) \end{split}$$

With $[\beta, \beta']_k = \beta_i \beta'_j \partial_k \Pi^{ij}(X)$

• R^2 gravity in two dimensions

- $\dim(M)=3$
- $(\eta_1, \eta_2, \eta_3) \equiv (e_1, e_2, \omega)$ (zweibein and connection)

• R^2 gravity in two dimensions

- $\dim(M)=3$
- $(\eta_1, \eta_2, \eta_3) \equiv (e_1, e_2, \omega)$ (zweibein and connection)

$$\Pi^{23}(X) = X^1, \qquad \Pi^{31}(X) = X^2$$
$$\Pi^{12}(X) = -(X^3)^2 + \Lambda$$

• R^2 gravity in two dimensions

- $\dim(M)=3$
- $(\eta_1, \eta_2, \eta_3) \equiv (e_1, e_2, \omega)$ (zweibein and connection) $\Pi^{23}(X) = X^1, \quad \Pi^{31}(X) = X^2$ $\Pi^{12}(X) = -(X^3)^2 + \Lambda$
- Then the Poisson sigma model in $(M, \{.,.\})$ upon integration of *X*-fields, leads to 2-d R^2 gravity.

$$S_{R^2} = \int_{\Sigma} \left(\frac{1}{4}R^2 + \Lambda\right) \sqrt{g} \, \mathrm{d}^2 \sigma$$

● *BF* theories.

- $(\mathfrak{g}, [., .])$ any Lie algebra, $M = \mathfrak{g}^*$.

BF theories.

- $(\mathfrak{g}, [.,.])$ any Lie algebra, $M = \mathfrak{g}^*$.
- $A, B \in \mathfrak{g}$ viewed as linear functions on \mathfrak{g}^* .
- Then $\{A,B\}=[A,B]$ defines the Kostant-Kirillov-Souriau Poisson bracket in \mathfrak{g}^*

BF theories.

- $(\mathfrak{g}, [.,.])$ any Lie algebra, $M = \mathfrak{g}^*$.
- $A, B \in \mathfrak{g}$ viewed as linear functions on \mathfrak{g}^* .
- Then $\{A, B\} = [A, B]$ defines the Kostant-Kirillov-Souriau Poisson bracket in \mathfrak{g}^*

The action in this case is equivalent to

$$S_{BF} = \int_{\Sigma} X^i F_i$$

with $X(\sigma) \in \mathfrak{g}^*$ and $F = d\eta + [\eta, \eta] \in \Omega^2(M) \otimes \mathfrak{g}$

 Poisson-Lie sigma models.
For any Poisson-Lie group (G, {.,.}) we can define its Poisson-sigma model.
It has several interesting properties:

Generalizes the BF-theory.

- Generalizes the BF-theory.
- The gauge group is the dual Poisson-Lie group $(G^*, \{.,.\}^*)$, acting by dressing transformation.

- Generalizes the BF-theory.
- The gauge group is the dual Poisson-Lie group $(G^*, \{.,.\}^*)$, acting by dressing transformation.
- Duality in the Hamiltonian formulation.

- Generalizes the BF-theory.
- The gauge group is the dual Poisson-Lie group $(G^*, \{.,.\}^*)$, acting by dressing transformation.
- Duality in the Hamiltonian formulation.
- With group $(G^*, \{.,.\}^*)$ it is equivalent to G/G WZW model.

Take a worldsheet with boundary. $\iota : \partial \Sigma \hookrightarrow \Sigma$

Put a brane $N \subset M$. i.e. $X : \Sigma \to M$ s.t. $\iota^* X : \partial \Sigma \to N$

Take a worldsheet with boundary. $\iota : \partial \Sigma \hookrightarrow \Sigma$

Put a brane $N \subset M$. i.e. $X : \Sigma \to M$ s.t. $\iota^* X : \partial \Sigma \to N$

$$\delta_X S = -\int_{\partial \Sigma} \delta X^i \eta_i + \int_{\Sigma} \delta X^i (d\eta_i + \frac{1}{2} \partial_i \Pi^{jk} \eta_j \wedge \eta_k)$$

We must have $(\iota^*X, \iota^*\eta) : T\partial\Sigma \to TN^\circ \quad TN^\circ \subset T^*_NM$

$$TN_p^{\circ} = \{\xi \in T_p^*M | \xi(v) = 0 \ \forall v \in T_pN \}$$

Take a worldsheet with boundary. $\iota : \partial \Sigma \hookrightarrow \Sigma$

Put a brane $N \subset M$. i.e. $X : \Sigma \to M$ s.t. $\iota^* X : \partial \Sigma \to N$

$$\delta_X S = -\int_{\partial \Sigma} \delta X^i \eta_i + \int_{\Sigma} \delta X^i (d\eta_i + \frac{1}{2} \partial_i \Pi^{jk} \eta_j \wedge \eta_k)$$

We must have $(\iota^*X, \iota^*\eta) : T\partial\Sigma \to TN^\circ \quad TN^\circ \subset T^*_NM$

From the equations of motion, ($\mathrm{d}X - \Pi^{\sharp}\eta = 0$)

$$\iota^* \mathrm{d} X = \Pi^{\sharp}(\iota^* X) \iota^* \eta \quad \Rightarrow$$
$$\Rightarrow \Pi^{\sharp}(\iota^* X) \iota^* \eta \in \Omega^1(\partial \Sigma, \iota^* X^* TN)$$

The boundary conditions (B.C.) for a brane $N \subset M$ are:

 $(\iota^* X, \iota^* \eta) : T \partial \Sigma \to AN \qquad AN := TN^\circ \cap \Pi^{\sharp^{-1}}(TN) \subset T^*_N M$

The boundary conditions (B.C.) for a brane $N \subset M$ are:

 $(\iota^* X, \iota^* \eta) : T \partial \Sigma \to AN \qquad AN := TN^\circ \cap \Pi^{\sharp^{-1}}(TN) \subset T^*_N M$

We assume *AN* of constant rank.

(regular brane or pre-Poisson)

The boundary conditions (B.C.) for a brane $N \subset M$ are:

 $(\iota^* X, \iota^* \eta) : T \partial \Sigma \to AN \qquad AN := TN^\circ \cap \Pi^{\sharp^{-1}}(TN) \subset T_N^*M$

We assume AN of constant rank.

(regular brane or pre-Poisson)

Then:

- AN is a Lie subalgebroid of T^*M .

The boundary conditions (B.C.) for a brane $N \subset M$ are:

 $(\iota^* X, \iota^* \eta) : T \partial \Sigma \to AN \qquad AN := TN^\circ \cap \Pi^{\sharp^{-1}}(TN) \subset T^*_N M$

We assume *AN* of constant rank.

(regular brane or pre-Poisson)

Then:

- AN is a Lie subalgebroid of T^*M .
- The gauge transformation δ_{β} subject to the same B. C.

 $\iota^*\beta \in \Gamma(\iota^*X^*AN)$

preserves B.C. and is a symmetry.

Pre-Poisson branes (examples) $AN := TN^{\circ} \cap \Pi^{\sharp^{-1}}(TN)^{-1}$

• Free Boundary Conditions: N = M then AN = 0.
• Free Boundary Conditions: N = M then AN = 0.

Coisotropic brane: Dirac's first class constraints.
 $\Pi^{\ddagger}(TN^{\circ}) \subset TN \Leftrightarrow AN = TN^{\circ}.$

 $AN := TN^{\circ} \cap \Pi^{\sharp^{-1}}(TN)^{-1}$

- Free Boundary Conditions: N = M then AN = 0.
- Coisotropic brane: Dirac's first class constraints.
 $\Pi^{\ddagger}(TN^{\circ}) \subset TN \Leftrightarrow AN = TN^{\circ}.$
- Constant rank Poisson-Dirac: AN ⊂ Ker(Π[♯]).
 Reduction of symplectic groupoids (M. Crainic, R. L. Fernandes)

 $AN := TN^{\circ} \cap \Pi^{\sharp^{-1}}(TN)^{\overline{}}$

• Free Boundary Conditions: N = M then AN = 0.

- Coisotropic brane: Dirac's first class constraints.
 $\Pi^{\ddagger}(TN^{\circ}) \subset TN \Leftrightarrow AN = TN^{\circ}.$
- Constant rank Poisson-Dirac: AN ⊂ Ker(Π[♯]).
 Reduction of symplectic groupoids (M. Crainic, R. L. Fernandes)
- Cosymplectic brane: Dirac's second class constraints. AN = 0.

 $AN := TN^{\circ} \cap \Pi^{\sharp^{-1}}(TN)^{\overline{}}$

• Free Boundary Conditions: N = M then AN = 0.

- Coisotropic brane: Dirac's first class constraints.
 $\Pi^{\ddagger}(TN^{\circ}) \subset TN \Leftrightarrow AN = TN^{\circ}.$
- Constant rank Poisson-Dirac: AN ⊂ Ker(Π[‡]).
 Reduction of symplectic groupoids (M. Crainic, R. L. Fernandes)
- Cosymplectic brane: Dirac's second class constraints. AN = 0.

Theorem: Every pre-Poisson submanifold can be embedded coisotropically in a cosymplectic submanifold.

 $AN := TN^{\circ} \cap \Pi^{\sharp^{-1}}(TN)^{\overline{}}$

Batalin-Vilkoviski quantization Poisson sigma model has a gauge symmetry of the open type (its algebra closes only on-shell).

The fields

- X^i, η_i the original fields.
- β_i, γ^i the ghost and antighosts.
- λ^i the auxiliary field (Lagrange multiplier)

Lorenz gauge $d * \eta_i = 0$ * Hodge star operator

The fields

- X^i, η_i the original fields.
- β_i, γ^i the ghost and antighosts.
- λ^i the auxiliary field (Lagrange multiplier) Lorenz gauge $d * \eta_i = 0$ * Hodge star operator
- The gauge fixed action

$$S_{gf} = \int_{\Sigma} \eta_i \wedge dX^i + \frac{1}{2} \Pi^{ij}(X) \eta_i \wedge \eta_j - \lambda^i d * \eta_i - \\ - * d\gamma^i \wedge (d\beta_i + \partial_i \Pi^{kl}(X) \eta_k \beta_l) - \\ - \frac{1}{4} * d\gamma^i \wedge * d\gamma^j \partial_i \partial_j \Pi^{kl}(X) \beta_k \beta_l$$

The fields

- X^i, η_i the original fields.
- β_i, γ^i the ghost and antighosts.
- λ^i the auxiliary field (Lagrange multiplier) Lorenz gauge $d * \eta_i = 0$ * Hodge star operator
- The gauge fixed action

$$S_{gf} = \int_{\Sigma} \eta_i \wedge dX^i + \frac{1}{2} \Pi^{ij}(X) \eta_i \wedge \eta_j - \lambda^i d * \eta_i - \\ - * d\gamma^i \wedge (d\beta_i + \partial_i \Pi^{kl}(X) \eta_k \beta_l) - \\ - \frac{1}{4} * d\gamma^i \wedge * d\gamma^j \partial_i \partial_j \Pi^{kl}(X) \beta_k \beta_l$$

Perturbative expansion.

Free B. C. N = M

 $\Sigma=D$ the unit disk. Pick three points at the boundary $0,1,\infty.$

Free B. C. N = M

 $\Sigma = D$ the unit disk. Pick three points at the boundary $0, 1, \infty$.

Then the perturbative expansion of

$$\int e^{\frac{i}{\hbar}S_{\rm gf}} f(X(0)) g(X(1)) \delta(X(\infty) - x)$$

gives the Kontsevich's star product.

$$f \star g(x) = f(x)g(x) + i\frac{\hbar}{2}\{f,g\}(x) + \dots$$

Free B. C. N = M

 $\Sigma = D$ the unit disk. Pick three points at the boundary $0, 1, \infty$.

Then the perturbative expansion of $\int e^{\frac{i}{\hbar}S_{\rm gf}} f(X(0))g(X(1))\delta(X(\infty)-x)$ gives the Kontsevich's star product.

$$f \star g(x) = f(x)g(x) + i\frac{\hbar}{2}\{f,g\}(x) + \dots$$

Adapted coordinates $X = (X^a, X^\mu)$, $N = \{(X^a, X^\mu = 0)\}$

Adapted coordinates
$$X = (X^a, X^{\mu}),$$
 $N = \{(X^a, X^{\mu} = 0)\}$
B. C.
$$\begin{cases} \iota^* X^a = free, \quad \iota^* \eta_a = 0 \end{cases}$$

Adapted coordinates
$$X = (X^a, X^{\mu})$$
, $N = \{(X^a, X^{\mu} = 0)\}$
B. C.
$$\begin{cases} \iota^* X^a = free, \quad \iota^* \eta_a = 0 \\ \iota^* X^{\mu} = 0, \quad \iota^* \eta_{\mu} = free \end{cases}$$

The perturbative expansion of

$$\int_{\iota^*X \in N} \mathrm{e}^{\frac{i}{\hbar}S_{\mathrm{gf}}} f(X(0)) g(X(1)) \delta(X(\infty) - x)$$

The perturbative expansion of $\int_{\mathcal{X} \in \mathcal{N}} \mathrm{e}^{\frac{i}{\hbar}S_{\mathrm{gf}}} f(X(0)) g(X(1)) \delta(X(\infty) - x)$

defines an associative ***** product in

 $\mathcal{A}_N^{\hbar} \equiv \{ f \in C^{\infty}(N)[[\hbar]] \text{ s.t. } \delta^{\hbar}(N) f = 0 \},\$

if anomaly vanishes.

a

Coisotropic branes. Bimodules.

 N_0, N_1 coisotropic branes with vanishing anomaly. $\delta^{\hbar}(N_0, N_1)X^i = \Pi^{i\nu}\beta_{\nu} + \dots \qquad (dX^{\nu}) \text{ a basis of } TN_0^{\circ} \cap TN_1^{\circ}.$ $\mathcal{A}_{N_0N_1}^{\hbar} \equiv \{f \in C^{\infty}(N_0 \cap N_1)[[\hbar]] \text{ s.t. } \delta^{\hbar}(N_0, N_1)f = 0\}$

Coisotropic branes. Bimodules.

 N_0 , N_1 coisotropic branes with vanishing anomaly. $\delta^{\hbar}(N_0, N_1)X^i = \Pi^{i\nu}\beta_{\nu} + \dots \qquad (dX^{\nu})$ a basis of $TN_0^{\circ} \cap TN_1^{\circ}$. $\mathcal{A}_{N_0N_1}^{\hbar} \equiv \{f \in C^{\infty}(N_0 \cap N_1)[[\hbar]] \text{ s.t. } \delta^{\hbar}(N_0, N_1)f = 0\}$ We define the action of $\mathcal{A}_{N_0}^{\hbar}$ and $\mathcal{A}_{N_1}^{\hbar}$ on $\mathcal{A}_{N_0N_1}^{\hbar}$

Which makes $\mathcal{A}^{\hbar}_{N_0N_1}$ a $\mathcal{A}^{\hbar}_{N_0}$ -bimodule- $\mathcal{A}^{\hbar}_{N_1}$.

Coisotropic branes. Bimodules.

 N_0 , N_1 coisotropic branes with vanishing anomaly. $\delta^{\hbar}(N_0, N_1)X^i = \Pi^{i\nu}\beta_{\nu} + \dots \qquad (dX^{\nu})$ a basis of $TN_0^{\circ} \cap TN_1^{\circ}$. $\mathcal{A}_{N_0N_1}^{\hbar} \equiv \{f \in C^{\infty}(N_0 \cap N_1)[[\hbar]] \text{ s.t. } \delta^{\hbar}(N_0, N_1)f = 0\}$ We define the action of $\mathcal{A}_{N_0}^{\hbar}$ and $\mathcal{A}_{N_1}^{\hbar}$ on $\mathcal{A}_{N_0N_1}^{\hbar}$

Which makes $\mathcal{A}^{\hbar}_{N_0N_1}$ a $\mathcal{A}^{\hbar}_{N_0}$ -bimodule- $\mathcal{A}^{\hbar}_{N_1}$.

Quantization of Poisson maps.

Adapted coordinates $X = (X^a, X^A)$, $N = \{(X^a, X^A = 0)\}$

Adapted coordinates
$$X = (X^a, X^A)$$
, $N = \{(X^a, X^A = 0)\}$
B. C.
$$\begin{cases} \iota^* X^a = free, \quad \iota^* \eta_a = 0\\ \iota^* X^A = 0, \quad \iota^* \eta_A = 0 \end{cases}$$

Adapted coordinates
$$X = (X^a, X^A)$$
, $N = \{(X^a, X^A = 0)\}$
B. C.
$$\begin{cases} \iota^* X^a = free, \quad \iota^* \eta_a = 0 \\ \iota^* X^A = 0, \quad \iota^* \eta_A = 0 \end{cases}$$
1st idea. $S_{gf} = \int_{\Sigma} \eta_i \wedge dX^i + \frac{1}{2} \Pi^{ij}(X) \eta_i \wedge \eta_j - \lambda^i d * \eta_i - - * d\gamma^i \wedge (d\beta_i + \partial_i \Pi^{kl}(X) \eta_k \beta_l) - - \frac{1}{4} * d\gamma^i \wedge * d\gamma^j \partial_i \partial_j \Pi^{kl}(X) \beta_k \beta_l \end{cases}$

det $\Pi^{AB}(x) \neq 0$, perform the Gaussian integration in η_A

Adapted coordinates
$$X = (X^a, X^A)$$
, $N = \{(X^a, X^A = 0)\}$
B. C.
$$\begin{cases} \iota^* X^a = free, \quad \iota^* \eta_a = 0 \\ \iota^* X^A = 0, \quad \iota^* \eta_A = 0 \end{cases}$$
1st idea. $S_{gf} = \int_{\Sigma} \eta_i \wedge dX^i + \frac{1}{2} \Pi^{ij}(X) \eta_i \wedge \eta_j - \lambda^i d* \eta_i - (\lambda^i + \lambda^i) \wedge (\lambda^j + \lambda^i) + (\lambda^j) h d^j + \lambda^j h d^j h$

det $\Pi^{AB}(x) \neq 0$, perform the Gaussian integration in η_A Effective action has a well defined pert. expansion. It is hard to compute and relate to star product.

2^{nd} idea

Change gauge fixing: $d * \eta_a = 0, X^A = 0$ for cosymplectic branes only: $\delta_\beta X^A = \Pi^{AB} \beta_B + \Pi^{Aa} \beta_a$.

 λ^a and λ_A new Lagrange multipliers.

2^{nd} idea

Change gauge fixing: $d * \eta_a = 0, X^A = 0$ for cosymplectic branes only: $\delta_\beta X^A = \Pi^{AB} \beta_B + \Pi^{Aa} \beta_a$.

 λ^a and λ_A new Lagrange multipliers.

$$S_{gf} = \int_{\Sigma} \eta_{i} \wedge dX^{i} + \frac{1}{2} \Pi^{ij}(X) \eta_{i} \wedge \eta_{j} - \lambda^{a} d * \eta_{a} - \lambda_{A} X^{A} - \\ - * d\gamma^{a} \wedge (d\beta_{a} + \partial_{a} \Pi^{ij}(X) \eta_{i} \beta_{j}) - \gamma_{A} \Pi^{Ai}(X) \beta_{i} - \\ - \frac{1}{4} * d\gamma^{a} \wedge * d\gamma^{b} \partial_{a} \partial_{b} \Pi^{ij}(X) \beta_{i} \beta_{j}$$

2^{nd} idea

Change gauge fixing: $d * \eta_a = 0, X^A = 0$ for cosymplectic branes only: $\delta_\beta X^A = \Pi^{AB} \beta_B + \Pi^{Aa} \beta_a$.

 λ^a and λ_A new Lagrange multipliers.

$$S_{gf} = \int_{\Sigma} \eta_{i} \wedge dX^{i} + \frac{1}{2} \Pi^{ij}(X) \eta_{i} \wedge \eta_{j} - \lambda^{a} d * \eta_{a} - \lambda_{A} X^{A} - \\ - * d\gamma^{a} \wedge (d\beta_{a} + \partial_{a} \Pi^{ij}(X) \eta_{i} \beta_{j}) - \gamma_{A} \Pi^{Ai}(X) \beta_{i} - \\ - \frac{1}{4} * d\gamma^{a} \wedge * d\gamma^{b} \partial_{a} \partial_{b} \Pi^{ij}(X) \beta_{i} \beta_{j}$$

Integrating in λ_A , γ_A (linear) and in η_A (quadratic). One obtains the effective action

$$S_{gf}^{eff} = \int_{\Sigma} \eta_a \wedge dX^a + \frac{1}{2} \Pi_{\mathcal{D}}^{ab}(X) \eta_a \wedge \eta_b - \lambda^a d * \eta_a$$
$$- * d\gamma^a \wedge (d\beta_a + \partial_a \Pi_{\mathcal{D}}^{cd}(X) \eta_c \beta_d) - \frac{1}{4} * d\gamma^a \wedge * d\gamma^b \partial_a \partial_b \Pi_{\mathcal{D}}^{cd}(X) \beta_c \beta_d$$

 $\Pi_{\mathcal{D}}^{ab} = \Pi^{ab} - \Pi^{aA} \Pi_{AB} \Pi^{Bb}$, the Dirac bracket in N.

$$S_{gf}^{eff} = \int_{\Sigma} \eta_a \wedge dX^a + \frac{1}{2} \Pi_{\mathcal{D}}^{ab}(X) \eta_a \wedge \eta_b - \lambda^a d * \eta_a$$
$$- * d\gamma^a \wedge (d\beta_a + \partial_a \Pi_{\mathcal{D}}^{cd}(X) \eta_c \beta_d) - \frac{1}{4} * d\gamma^a \wedge * d\gamma^b \partial_a \partial_b \Pi_{\mathcal{D}}^{cd}(X) \beta_c \beta_d$$

 $\Pi_{\mathcal{D}}^{ab} = \Pi^{ab} - \Pi^{aA} \Pi_{AB} \Pi^{Bb}$, the Dirac bracket in N.

$$\int_{\iota^*X \in N} e^{\frac{i}{\hbar}S_{\mathrm{gf}}} f(X(0))g(X(1))\delta(X(\infty) - x) = f \star_{\mathcal{D}} g$$

defines an associative product in $\mathcal{A}_N^{\hbar} = C^{\infty}(N)[[h]]$.

Pre-Poisson brane

Adapted coordinates $X = (X^a, X^\mu, X^A) = (X^p, X^A)$. B. C. $\begin{cases} \iota^* X^a = free, \quad \iota^* \eta_a = 0. & \text{brane} \\ \iota^* X^\mu = 0, & \iota^* \eta_\mu = free. & 1^{\text{st}} \text{ class} \\ \iota^* X^A = 0, & \iota^* \eta_A = 0. & 2^{\text{nd}} \text{ class} \end{cases}$

Gauge fixing: $d * \eta_p = 0, X^A = 0.$

Pre-Poisson brane

Adapted coordinates $X = (X^a, X^\mu, X^A) = (X^p, X^A)$. B. C. $\begin{cases} \iota^* X^a = free, \quad \iota^* \eta_a = 0. & \text{brane} \\ \iota^* X^\mu = 0, & \iota^* \eta_\mu = free. & 1^{\text{st}} \text{ class} \\ \iota^* X^A = 0, & \iota^* \eta_A = 0. & 2^{\text{nd}} \text{ class} \end{cases}$

Gauge fixing: $d * \eta_p = 0, X^A = 0.$

$$S_{gf}^{eff} = \int_{\Sigma} \eta_p \wedge dX^p + \frac{1}{2} \Pi_{\mathcal{D}}^{pq}(X) \eta_p \wedge \eta_q - \lambda^p d * \eta_p$$
$$- * d\gamma^p \wedge (d\beta_p + \partial_p \Pi_{\mathcal{D}}^{qr}(X) \eta_q \beta_r) - \frac{1}{4} * d\gamma^p \wedge * d\gamma^q \partial_p \partial_q \Pi_{\mathcal{D}}^{rs}(X) \beta_r \beta_s$$

Pre-Poisson brane

Adapted coordinates $X = (X^a, X^\mu, X^A) = (X^p, X^A)$. B. C. $\begin{cases} \iota^* X^a = free, \quad \iota^* \eta_a = 0. & \text{brane} \\ \iota^* X^\mu = 0, & \iota^* \eta_\mu = free. & 1^{\text{st}} \text{ class} \\ \iota^* X^A = 0, & \iota^* \eta_A = 0. & 2^{\text{nd}} \text{ class} \end{cases}$

Gauge fixing: $d * \eta_p = 0, X^A = 0.$

$$S_{\text{gf}}^{\text{eff}} = \int_{\Sigma} \eta_p \wedge dX^p + \frac{1}{2} \Pi_{\mathcal{D}}^{pq}(X) \eta_p \wedge \eta_q - \lambda^p d * \eta_p$$
$$- * d\gamma^p \wedge (d\beta_p + \partial_p \Pi_{\mathcal{D}}^{qr}(X) \eta_q \beta_r) - \frac{1}{4} * d\gamma^p \wedge * d\gamma^q \partial_p \partial_q \Pi_{\mathcal{D}}^{rs}(X) \beta_r \beta_s$$

i. e. it defines an effective Poisson sigma model

in $M' = \{(X^a, X^\mu, X^A = 0)\}$ with brane $N' = \{(X^a, X^\mu = 0)\}.$

Unlike the coisotropic branes, the cosymplectic ones do always lead to associative star products.

- Unlike the coisotropic branes, the cosymplectic ones do always lead to associative star products.
- Cosymplectic branes redefine the perturbative expansion.

- Unlike the coisotropic branes, the cosymplectic ones do always lead to associative star products.
- Cosymplectic branes redefine the perturbative expansion.
- Deformation of branes, from cosymplectic to coisotropic.

- Unlike the coisotropic branes, the cosymplectic ones do always lead to associative star products.
- Cosymplectic branes redefine the perturbative expansion.
- Deformation of branes, from cosymplectic to coisotropic.
- Quantization with several branes?
Final remarks

- Unlike the coisotropic branes, the cosymplectic ones do always lead to associative star products.
- Cosymplectic branes redefine the perturbative expansion.
- Deformation of branes, from cosymplectic to coisotropic.
- Quantization with several branes?

Final remarks

- Unlike the coisotropic branes, the cosymplectic ones do always lead to associative star products.
- Cosymplectic branes redefine the perturbative expansion.
- Deformation of branes, from cosymplectic to coisotropic.
- Quantization with several branes?