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Poisson sigma model.

N. Ikeda: Non linear gauge theories, applications to 2d
gravity.

P. Schaller and T. Strobl: put the model into the right
geometric setup and coined its name, applications to
gravity, BF theory, Yang-Mills...

A. Cattaneo and G. Felder: relation to Kontsevich’s
deformation quantization, to symplectic groupoids,
AKSZ formalism...

Cattaneo and Felder: coisotropic branes.

More general branes?
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XVIII Int. Fall Workshop on Geometry and Physics – p.4/21



Poisson sigma model

The target: (M, { , })

- { , } a Poisson bracket in C∞(M).
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Poisson sigma model

The target: (M, { , })

- { , } a Poisson bracket in C∞(M).

- In coordinates X = (X1, . . . , Xn) for M

Πij(X) = {Xi, Xj}(X)
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Poisson sigma model

The target: (M, { , }) Πij(X) = {Xi, Xj}(X)

The fields:
- Σ two dimensional space-time (worldsheet).

- The fields are given by the bundle map

(X, η) : TΣ → T ∗M

i.e. X : Σ → M , η ∈ Ω1(Σ, X∗T ∗M)

with coordinates σ = (σ1, σ2) for Σ

η = ηκi(σ)dσκdXi = ηidXi
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Poisson sigma model

The target: (M, { , }) Πij(X) = {Xi, Xj}(X)

The fields: X : Σ → M , η = ηκi(σ)dσκdXi = ηidXi

The action:

S(X, η) =

∫

Σ
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj
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Poisson sigma model

The target: (M, { , }) Πij(X) = {Xi, Xj}(X)

The fields: X : Σ → M , η = ηκi(σ)dσκdXi = ηidXi

The action:

S(X, η) =

∫

Σ
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj

The equations of motion:

dX − Π♯(X)η = 0 (Π♯η)j = Πijηi

dηi +
1

2
∂iΠ

jk(X)ηj ∧ ηk = 0

i. e. (X, η) : TΣ → T ∗M Lie algebroid homomorphism.
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The Gauge symmetry:

Under the transformations

δβX = Π♯(X)β β = βi(σ)dXi ∈ Γ(X∗T ∗M)

δβηi = dβi + ∂iΠ
jkηjβk,
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δβX = Π♯(X)β β = βi(σ)dXi ∈ Γ(X∗T ∗M)

δβηi = dβi + ∂iΠ
jkηjβk,

δβS =

∫

Σ
d(dXiβi).
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The Gauge symmetry:

Under the transformations

δβX = Π♯(X)β β = βi(σ)dXi ∈ Γ(X∗T ∗M)

δβηi = dβi + ∂iΠ
jkηjβk,

δβS =

∫

Σ
d(dXiβi).

[δβ, δβ′ ]Xi = δ[β,β′]X
i

[δβ, δβ′ ]ηi = δ[β,β′]ηi−βkβ
′
l∂i∂jΠ

kl(dXj − Πsjηs)

With [β, β′]k = βiβ
′
j∂kΠ

ij(X)
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Examples

R2 gravity in two dimensions

- dim(M)=3

- (η1, η2, η3) ≡ (e1, e2, ω) (zweibein and connection)
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Examples

R2 gravity in two dimensions

- dim(M)=3

- (η1, η2, η3) ≡ (e1, e2, ω) (zweibein and connection)

Π23(X) = X1, Π31(X) = X2

Π12(X) = −(X3)2 + Λ

- Then the Poisson sigma model in (M, {., .}) upon
integration of X-fields, leads to 2-d R2 gravity.

SR2 =

∫

Σ

(

1

4
R2 + Λ

)√
g d2σ
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Examples

BF theories.

- (g, [., .]) any Lie algebra, M = g
∗.
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Examples

BF theories.

- (g, [., .]) any Lie algebra, M = g
∗.

- A,B ∈ g viewed as linear functions on g
∗.

- Then {A,B} = [A,B] defines the Kostant-Kirillov-Souriau
Poisson bracket in g

∗
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Examples

BF theories.

- (g, [., .]) any Lie algebra, M = g
∗.

- A,B ∈ g viewed as linear functions on g
∗.

- Then {A,B} = [A,B] defines the Kostant-Kirillov-Souriau
Poisson bracket in g

∗

The action in this case is equivalent to

SBF =

∫

Σ
XiFi

with X(σ) ∈ g
∗ and F = dη + [η, η] ∈ Ω2(M) ⊗ g
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Examples

Poisson-Lie sigma models.
For any Poisson-Lie group (G, {., .}) we can define its
Poisson-sigma model.
It has several interesting properties:
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Examples

Poisson-Lie sigma models.
For any Poisson-Lie group (G, {., .}) we can define its
Poisson-sigma model.
It has several interesting properties:

Generalizes the BF-theory.
The gauge group is the dual Poisson-Lie group
(G∗, {., .}∗), acting by dressing transformation.
Duality in the Hamiltonian formulation.
With group (G∗, {., .}∗) it is equivalent to G/G WZW
model.
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Boundary conditions

Take a worldsheet with boundary. ι : ∂Σ →֒ Σ

Put a brane N ⊂ M . i.e. X : Σ → M s.t. ι∗X : ∂Σ → N
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Boundary conditions

Take a worldsheet with boundary. ι : ∂Σ →֒ Σ

Put a brane N ⊂ M . i.e. X : Σ → M s.t. ι∗X : ∂Σ → N

δXS = −
∫

∂Σ
δXiηi +

∫

Σ
δXi(dηi +

1

2
∂iΠ

jkηj ∧ ηk)

We must have (ι∗X, ι∗η) : T∂Σ → TN◦ TN◦ ⊂ T ∗
NM

TN◦
p = {ξ ∈ T ∗

p M |ξ(v) = 0 ∀v ∈ TpN}
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Boundary conditions

Take a worldsheet with boundary. ι : ∂Σ →֒ Σ

Put a brane N ⊂ M . i.e. X : Σ → M s.t. ι∗X : ∂Σ → N

δXS = −
∫

∂Σ
δXiηi +

∫

Σ
δXi(dηi +

1

2
∂iΠ

jkηj ∧ ηk)

We must have (ι∗X, ι∗η) : T∂Σ → TN◦ TN◦ ⊂ T ∗
NM

From the equations of motion, ( dX − Π♯η = 0 )

ι∗dX = Π♯(ι∗X)ι∗η ⇒

⇒ Π♯(ι∗X)ι∗η ∈ Ω1(∂Σ, ι∗X∗TN)
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Boundary conditions

The boundary conditions (B.C.) for a brane N ⊂ M are:

(ι∗X, ι∗η) : T∂Σ → AN AN := TN◦ ∩ Π♯−1
(TN) ⊂ T ∗

NM

XVIII Int. Fall Workshop on Geometry and Physics – p.11/21



Boundary conditions

The boundary conditions (B.C.) for a brane N ⊂ M are:

(ι∗X, ι∗η) : T∂Σ → AN AN := TN◦ ∩ Π♯−1
(TN) ⊂ T ∗

NM

We assume AN of constant rank.
(regular brane or pre-Poisson)
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Boundary conditions

The boundary conditions (B.C.) for a brane N ⊂ M are:

(ι∗X, ι∗η) : T∂Σ → AN AN := TN◦ ∩ Π♯−1
(TN) ⊂ T ∗

NM

We assume AN of constant rank.
(regular brane or pre-Poisson)

Then:
- AN is a Lie subalgebroid of T ∗M .
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Boundary conditions

The boundary conditions (B.C.) for a brane N ⊂ M are:

(ι∗X, ι∗η) : T∂Σ → AN AN := TN◦ ∩ Π♯−1
(TN) ⊂ T ∗

NM

We assume AN of constant rank.
(regular brane or pre-Poisson)

Then:
- AN is a Lie subalgebroid of T ∗M .
- The gauge transformation δβ subject to the same B. C.

ι∗β ∈ Γ(ι∗X∗AN)

preserves B.C. and is a symmetry.
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Pre-Poisson branes (examples)

Free Boundary Conditions:
AN := TN◦ ∩ Π♯−1

(TN)

N = M then AN = 0.
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Coisotropic brane: Dirac’s first class constraints.
Π♯(TN◦) ⊂ TN ⇔ AN = TN◦.
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Pre-Poisson branes (examples)

Free Boundary Conditions:
AN := TN◦ ∩ Π♯−1

(TN)

N = M then AN = 0.

Coisotropic brane: Dirac’s first class constraints.
Π♯(TN◦) ⊂ TN ⇔ AN = TN◦.

Constant rank Poisson-Dirac: AN ⊂ Ker(Π♯).
Reduction of symplectic groupoids (M. Crainic, R. L.
Fernandes)

Cosymplectic brane: Dirac’s second class constraints.
AN = 0.

Theorem: Every pre-Poisson submanifold can be embedded

coisotropically in a cosymplectic submanifold.
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Quantization

Batalin-Vilkoviski quantization
Poisson sigma model has a gauge symmetry of the
open type (its algebra closes only on-shell).
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Quantization

The fields
Xi, ηi the original fields.

βi, γ
i the ghost and antighosts.

λi the auxiliary field (Lagrange multiplier)
Lorenz gauge d ∗ ηi = 0 ∗ Hodge star operator
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Quantization

The fields
Xi, ηi the original fields.

βi, γ
i the ghost and antighosts.

λi the auxiliary field (Lagrange multiplier)
Lorenz gauge d ∗ ηi = 0 ∗ Hodge star operator

The gauge fixed action

Sgf =

∫

Σ
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj − λid ∗ ηi−

− ∗ dγi ∧ (dβi + ∂iΠ
kl(X)ηkβl)−

−1

4
∗ dγi ∧ ∗dγj∂i∂jΠ

kl(X)βkβl
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Quantization

The fields
Xi, ηi the original fields.

βi, γ
i the ghost and antighosts.

λi the auxiliary field (Lagrange multiplier)
Lorenz gauge d ∗ ηi = 0 ∗ Hodge star operator

The gauge fixed action

Sgf =

∫

Σ
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj −λid ∗ ηi−

− ∗ dγi∧ (dβi + ∂iΠ
kl(X)ηkβl)−

−1

4
∗ dγi ∧ ∗dγj∂i∂jΠ

kl(X)βkβl

Perturbative expansion.
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Free B. C. N = M

Σ = D the unit disk. Pick three points at the boundary
0, 1,∞.

8

0

1
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Free B. C. N = M

Σ = D the unit disk. Pick three points at the boundary
0, 1,∞.

8

f
0

1

g

δx

Then the perturbative expansion of
∫

e
i

~
Sgff(X(0))g(X(1))δ(X(∞)− x)

gives the Kontsevich’s star product.

f ⋆ g(x) = f(x)g(x) + i~

2{f, g}(x) + . . .
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Free B. C. N = M

Σ = D the unit disk. Pick three points at the boundary
0, 1,∞.

8

f
0

1

g

δx

Then the perturbative expansion of
∫

e
i

~
Sgff(X(0))g(X(1))δ(X(∞)− x)

gives the Kontsevich’s star product.

f ⋆ g(x) = f(x)g(x) + i~

2{f, g}(x) + . . .

f

g

h

δx

= f h

δx

g
f

g

h

δx

(f ⋆ g) ⋆ h = f ⋆ (g ⋆ h)
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Coisotropic brane.

Adapted coordinates X = (Xa, Xµ), N = {(Xa, Xµ = 0)}
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Coisotropic brane.

Adapted coordinates X = (Xa, Xµ), N = {(Xa, Xµ = 0)}

B. C.







ι∗Xa = free, ι∗ηa = 0
a
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Coisotropic brane.

Adapted coordinates X = (Xa, Xµ), N = {(Xa, Xµ = 0)}

B. C.







ι∗Xa = free, ι∗ηa = 0
a

ι∗Xµ = 0, ι∗ηµ = free
µ
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Coisotropic brane.

Adapted coordinates X = (Xa, Xµ), N = {(Xa, Xµ = 0)}

B. C.







ι∗Xa = free, ι∗ηa = 0
a

ι∗Xµ = 0, ι∗ηµ = free
µ

The perturbative expansion of
∫

ι∗X∈N

e
i

~
Sgff(X(0))g(X(1))δ(X(∞) − x)

0

1

δx

g

f
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Coisotropic brane.

Adapted coordinates X = (Xa, Xµ), N = {(Xa, Xµ = 0)}

B. C.







ι∗Xa = free, ι∗ηa = 0
a

ι∗Xµ = 0, ι∗ηµ = free
µ

The perturbative expansion of
∫

ι∗X∈N

e
i

~
Sgff(X(0))g(X(1))δ(X(∞) − x)

0

1

δx

g

f

defines an associative ⋆ product in

A~

N ≡ {f ∈ C∞(N)[[~]] s.t. δ~(N)f = 0},

if anomaly vanishes. δ~(N)Xi = Πµi(X)βµ + ...
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Coisotropic branes. Bimodules.

N0, N1 coisotropic branes with vanishing anomaly.

δ~(N0, N1)X
i = Πiνβν + . . . (dXν) a basis of TN◦

0 ∩ TN◦
1 .

A~

N0N1
≡ {f ∈ C∞(N0 ∩ N1)[[~]] s.t. δ~(N0, N1)f = 0}
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Coisotropic branes. Bimodules.

N0, N1 coisotropic branes with vanishing anomaly.

δ~(N0, N1)X
i = Πiνβν + . . . (dXν) a basis of TN◦

0 ∩ TN◦
1 .

A~

N0N1
≡ {f ∈ C∞(N0 ∩ N1)[[~]] s.t. δ~(N0, N1)f = 0}

We define the action of A~

N0
and A~

N1
on A~

N0N1

f ◮ Ψ(x) = f

δx

N0 1N
Ψ

Ψ ◭ g(x) =

δx

N0 1N
Ψ

g

Which makes A~

N0N1
a A~

N0
-bimodule-A~

N1
.
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Coisotropic branes. Bimodules.

N0, N1 coisotropic branes with vanishing anomaly.

δ~(N0, N1)X
i = Πiνβν + . . . (dXν) a basis of TN◦

0 ∩ TN◦
1 .

A~

N0N1
≡ {f ∈ C∞(N0 ∩ N1)[[~]] s.t. δ~(N0, N1)f = 0}

We define the action of A~

N0
and A~

N1
on A~

N0N1

f ◮ Ψ(x) = f

δx

N0 1N
Ψ

Ψ ◭ g(x) =

δx

N0 1N
Ψ

g

Which makes A~

N0N1
a A~

N0
-bimodule-A~

N1
.

Quantization of Poisson maps.
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Cosymplectic brane

Adapted coordinates X = (Xa, XA), N = {(Xa, XA = 0)}
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Cosymplectic brane

Adapted coordinates X = (Xa, XA), N = {(Xa, XA = 0)}

B. C.











ι∗Xa = free, ι∗ηa = 0
a
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Cosymplectic brane

Adapted coordinates X = (Xa, XA), N = {(Xa, XA = 0)}

B. C.











ι∗Xa = free, ι∗ηa = 0
a

ι∗XA = 0, ι∗ηA = 0
A

XVIII Int. Fall Workshop on Geometry and Physics – p.17/21



Cosymplectic brane

Adapted coordinates X = (Xa, XA), N = {(Xa, XA = 0)}

B. C.











ι∗Xa = free, ι∗ηa = 0
a

ι∗XA = 0, ι∗ηA = 0
A

1st idea. Sgf =

∫

Σ
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj − λid ∗ ηi−

− ∗ dγi ∧ (dβi + ∂iΠ
kl(X)ηkβl)−

−1

4
∗ dγi ∧ ∗dγj∂i∂jΠ

kl(X)βkβl

det ΠAB(x) 6= 0, perform the Gaussian integration in ηA
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Cosymplectic brane

Adapted coordinates X = (Xa, XA), N = {(Xa, XA = 0)}

B. C.











ι∗Xa = free, ι∗ηa = 0
a

ι∗XA = 0, ι∗ηA = 0
A

1st idea. Sgf =

∫

Σ
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj − λid ∗ ηi−

− ∗ dγi ∧ (dβi + ∂iΠ
kl(X)ηkβl)−

−1

4
∗ dγi ∧ ∗dγj∂i∂jΠ

kl(X)βkβl

det ΠAB(x) 6= 0, perform the Gaussian integration in ηA

Effective action has a well defined pert. expansion.
It is hard to compute and relate to star product.
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Cosymplectic brane

2nd idea
Change gauge fixing: d ∗ ηa = 0, XA = 0

for cosymplectic branes only: δβXA = ΠABβB + ΠAaβa.

λa and λA new Lagrange multipliers.
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Cosymplectic brane

2nd idea
Change gauge fixing: d ∗ ηa = 0, XA = 0

for cosymplectic branes only: δβXA = ΠABβB + ΠAaβa.

λa and λA new Lagrange multipliers.

Sgf =

∫

Σ
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj − λad ∗ ηa − λAXA−

− ∗ dγa ∧ (dβa + ∂aΠ
ij(X)ηiβj) − γAΠAi(X)βi−

−1

4
∗ dγa ∧ ∗dγb∂a∂bΠ

ij(X)βiβj
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Cosymplectic brane

2nd idea
Change gauge fixing: d ∗ ηa = 0, XA = 0

for cosymplectic branes only: δβXA = ΠABβB + ΠAaβa.

λa and λA new Lagrange multipliers.

Sgf =

∫

Σ
ηi ∧ dXi +

1

2
Πij(X)ηi ∧ ηj − λad ∗ ηa − λAXA−

− ∗ dγa ∧ (dβa + ∂aΠ
ij(X)ηiβj) − γAΠAi(X)βi−

−1

4
∗ dγa ∧ ∗dγb∂a∂bΠ

ij(X)βiβj

Integrating in λA, γA (linear) and in ηA (quadratic). One ob-

tains the effective action
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Cosymplectic brane

Seff
gf =

∫

Σ
ηa ∧ dXa +

1

2
Πab
D (X)ηa ∧ ηb − λad ∗ ηa

− ∗ dγa ∧ (dβa + ∂aΠ
cd
D (X)ηcβd)−

−1

4
∗ dγa ∧ ∗dγb∂a∂bΠ

cd
D (X)βcβd

Πab
D

= Πab − ΠaAΠABΠBb, the Dirac bracket in N .
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Cosymplectic brane

Seff
gf =

∫

Σ
ηa ∧ dXa +

1

2
Πab
D (X)ηa ∧ ηb − λad ∗ ηa

− ∗ dγa ∧ (dβa + ∂aΠ
cd
D (X)ηcβd)−

−1

4
∗ dγa ∧ ∗dγb∂a∂bΠ

cd
D (X)βcβd

Πab
D

= Πab − ΠaAΠABΠBb, the Dirac bracket in N .
∫

ι∗X∈N

e
i

~
Sgff(X(0))g(X(1))δ(X(∞)− x) = f ⋆

D
g

defines an associative product in A~

N = C∞(N)[[h]].
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Pre-Poisson brane

Adapted coordinates X = (Xa, Xµ, XA) = (Xp, XA).

B. C.











ι∗Xa = free, ι∗ηa = 0. brane

ι∗Xµ = 0, ι∗ηµ = free. 1st class

ι∗XA = 0, ι∗ηA = 0. 2nd class

Gauge fixing: d ∗ ηp = 0, XA = 0.
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B. C.











ι∗Xa = free, ι∗ηa = 0. brane

ι∗Xµ = 0, ι∗ηµ = free. 1st class

ι∗XA = 0, ι∗ηA = 0. 2nd class

Gauge fixing: d ∗ ηp = 0, XA = 0.

Seff
gf =

∫

Σ
ηp ∧ dXp +

1

2
Πpq
D

(X)ηp ∧ ηq − λpd ∗ ηp

− ∗ dγp ∧ (dβp + ∂pΠ
qr
D

(X)ηqβr)−
−1

4
∗ dγp ∧ ∗dγq∂p∂qΠ

rs
D (X)βrβs
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Pre-Poisson brane

Adapted coordinates X = (Xa, Xµ, XA) = (Xp, XA).

B. C.











ι∗Xa = free, ι∗ηa = 0. brane

ι∗Xµ = 0, ι∗ηµ = free. 1st class

ι∗XA = 0, ι∗ηA = 0. 2nd class

Gauge fixing: d ∗ ηp = 0, XA = 0.

Seff
gf =

∫

Σ
ηp ∧ dXp +

1

2
Πpq
D

(X)ηp ∧ ηq − λpd ∗ ηp

− ∗ dγp ∧ (dβp + ∂pΠ
qr
D

(X)ηqβr)−
−1

4
∗ dγp ∧ ∗dγq∂p∂qΠ

rs
D (X)βrβs

i. e. it defines an effective Poisson sigma model

in M ′ = {(Xa, Xµ, XA = 0)} with brane N ′ = {(Xa, Xµ = 0)}.
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Final remarks

Unlike the coisotropic branes, the cosymplectic ones do
always lead to associative star products.
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