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INTRODUCTION



THE CLASSICAL WILLMORE

FUNCTIONAL

The classical Willmore functional is defined as follows

W(φ) =

∫
M

H2dA,

where
S −→ compact, boundary free and connected surface
φ : S → R3 −→ immersion
H −→ mean curvature
dA −→ element of area induced on S

Its critical points are called Willmore surfaces.

Its study was proposed by Willmore in 1965.



THE WILLMORE FUNCTIONAL IN

RIEMANNIAN SETTING

The Willmore functional in Riemannian setting

W(φ) =

∫
S

(H2 + R̄)dA +

∫
∂S

kg ds,

where
S −→ surface (with boundary)
φ : S → M̄ −→ immersion
M̄ −→ Riemannian 3-manifold
H −→ mean curvature of φ
R̄ −→ sectional curvature of φ(S) in M̄
kg −→ geodesic curvature of ∂S in S

(oriented as in the Stokes theorem).

Proposed by Weiner in 1978.



THE WILLMORE FUNCTIONAL IN

LORENTZIAN SETTING

The Willmore functional in Lorentzian setting

W(φ) =

∫
S

(H2 + εR̄)dA−
∫
∂S

kg ds,

S −→ surface (with boundary)
M̄ −→ Lorentzian 3-manifold
φ : S → M̄ −→ non-degenerate immersion with

signature ε
H −→ mean curvature of φ
R̄ −→ sectional curvature of φ(S) in M̄
kg −→ geodesic curvature of ∂S in S

(oriented as in the Stokes theorem).



THE WILLMORE FUNCTIONAL IN

LORENTZIAN SETTING

Using the Gauss-Bonnet theorem for surfaces, in its Riemannian and
its Lorentzian versions respectively, we get that

W is invariant under conformal changes of the metric of M̄.

φ : S → M̄ is a Willmore surface if it is a critical point of W under
(compact support) variations fixing:

∂S and its Gauss map along ∂S

When M̄ = L3, the Gauss map of Willmore surfaces are the solutions
of the 2-dimensional nonlinear sigma-model with symmetry O(2,1).
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ELASTIC CURVES

Elastic energy:

Eλ(α) =

∫
α

(k2 + λ) λ ∈ R

(M̄, ḡ) −→ (semi-)Riemannian manifold
α : I → M̄ −→ non-degenerate immersed curve with curvature k
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ELASTIC CURVES

Elastic energy:

Eλ(α) =

∫
α

(k2 + λ) λ ∈ R

(M̄, ḡ) −→ (semi-)Riemannian manifold
α : I → M̄ −→ non-degenerate immersed curve with curvature k

When α has boundary, it is called clamped elastic curve if it is a
critical point of Eλ under (compact support) variations fixing:

the boundary points of α and the tangents at them.

λ = 0 −→ free elastic curve



LINK

Willmore generated free elastic
surfaces by curves

of revolution in R3 hyperbolic plane Barros

of revolution in L3 anti de Sitter plane Barros,

with spacelike axis and Ortega

of revolution in L3 anti de Sitter plane Barros,

with null axis and Ortega



LINK

(M,g) −→ Riemannian or Lorentzian surface

γ −→ nondegenerate curve immersed in (M,g)

f : S1 → R+ −→ smooth function

S1 × γ is Willmore in (S1 ×M, εdt2 + f 2g)

m

γ is a free elastic curve in (M,g)

Barros



NATURAL QUESTION

Given:

(M̄, ḡ) −→ semi-Riemannian 3-manifold

G −→ 1-parameter group of isometries

What must (M̄, ḡ) and G satisfy to obtain that

G-invariant Willmore surfaces in (M̄, ḡ)

are generated by

elastic curves in certain surface

?



TECHNIQUE

In all the previous results

G is COMPACT

Except for:

Rotational Willmore surfaces in L3 with null axis

IDEA

Extend the technique to get results for

Lorentzian product manifolds of dimension 3,

G being a non necessarily compact 1-parameter group of isometries



WILLMORE SURFACES IN 3-DIM

LORENTZIAN PRODUCT SPACES



1st VARIATION OF W
IN A SEMI-RIEMANNIAN SETTING

THEOREM BARROS, AND ORTEGA

φ : S → M̄ is a Willmore surface if and only if∫
S

ḡ(R(H) + N(R̄V)N,V⊥)dA = 0,

for any variational field V compatible with the boundary conditions.
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φ : S → M̄ is a Willmore surface if and only if∫
S

ḡ(R(H) + N(R̄V)N,V⊥)dA = 0,

for any variational field V compatible with the boundary conditions.

H −→ mean curvature vector field

R = ε(4+ Ã) + (Ric(N,N)− 2(H2 + εR̄)) I

is a kind of Schrödinger operator, being

4 −→ Laplacian respect to the normal conection
Ã −→ Simons’ operator
Ric −→ Ricci curvature



1st VARIATION OF W
IN A SEMI-RIEMANNIAN SETTING

THEOREM BARROS, AND ORTEGA

φ : S → M̄ is a Willmore surface if and only if∫
S

ḡ(R(H) + N(R̄V)N,V⊥)dA = 0,

for any variational field V compatible with the boundary conditions.

N −→ Gauss map along φ

R̄V(m, v)→ sectional curvature of M̄ restricted to the level surface v ,
at the point m



WILLMORE SURFACES IN A 3-DIM

LORENTZIAN PRODUCT SPACE

(M1,ds2) −→ 1-dimensional Riemannian manifold
(M,g) −→ Riemannian or Lorentzian surface

(M̄, ḡ) = (M ×M1, g + ε̄ds2), ε̄ =
{
−1 if g Riemannian
1 if g Lorentzian

S = γ ×M1, γ non-degenerate curve in M

Is γ ×M1 Willmore?

N(RV) = 0,
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(M̄, ḡ) = (M ×M1, g + ε̄ds2), ε̄ =
{
−1 if g Riemannian
1 if g Lorentzian

S = γ ×M1, γ non-degenerate curve in M

Is γ ×M1 Willmore?

N(R̄V) = 0,



WILLMORE SURFACES IN A 3-DIM

LORENTZIAN PRODUCT SPACE
so γ ×M1 is Willmore if and only if∫

γ×M1
ḡ(R(H),V⊥)dA = 0,

if and only if
R(H) = 0

if and only if
ε̃k ′′ + εk3 + 2R k = 0

where ε̃ is the signature of γ and R is the sectional curvature of M

THEOREM

γ ×M1 is a Willmore surface in (M ×M1, g + ε̄ds2)

m

γ is a free elastic curve in (M,g)
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WILLMORE SURFACES IN A 3-DIM
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so γ ×M1 is Willmore if and only if∫

γ×M1
ḡ(R(H),V⊥)dA = 0,

if and only if
R(H) = 0

if and only if

ε̃k ′′ + εk3 + 2R k = 0 elastic curves equation

where ε̃ is the signature of γ and R is the sectional curvature of M

THEOREM

γ ×M1 is a Willmore surface in (M ×M1, g + ε̄ds2)

m

γ is a free elastic curve in (M,g)



IN A 3-DIM WARPED PRODUCT

Consider the warped product spacetimes

M1 ×f M = (M1×M, ε̄ds2+f 2g) and M ×h M1 = (M1×M, ε̄h2ds2+g),

where f : M1 −→ R+ and h : M −→ R+ are smooth

Since W is invariant under conformal changes of the metric

COROLLARY

M1 × γ is Willmore in M1 ×f M
m

γ is free elastic in (M,g)
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m

γ is free elastic in (M,
1
h2 g)
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WILLMORE SURFACES IN

GENERALIZED ROBERTSON-WALKER

AND STATIC SPACETIMES



IN GENERALIZED ROBERTSON-WALKER

SPACETIMES

A GENERALIZED ROBERTSON-WALKER SPACETIME IS

I ×f M = (I ×M,−dt2 + f 2g)

where (M,g) is Riemannian and f : I −→ R+

When dimM = 2

COROLLARY
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m
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STANDARD STATIC AND STATIC

SPACETIMES

A timelike Killing vector field ξ in a Lorentzian manifold (M̄, ḡ) is
• static: if it is irrotational
• standard static: if static and there exists an isometry

χ : (M̄, ḡ) −→ (R×M,−h2dt2 + g),

where dχ(ξ) = ∂t , ξ(h ◦ χ) = 0 and (M,g) is Riemannian

A STANDARD STATIC SPACETIME IS

A spacetime admiting a standard static vector field.

A STATIC SPACETIME IS

A spacetime admiting a static vector field.
Locally, it is a standard static one.



IN STANDARD STATIC SPACETIMES

COROLLARY

I × γ is Willmore in the standard static spacetime M ×h I

m

γ is a free elastic curve in (M,
1
h2 g)

Given G −→ 1-parameter group of isometries with timelike Killing
vector field ξ

COROLLARY

If ξ is standard static,

G-invariant Willmore surfaces in (M̄, ḡ) are generated by

elastic curves in (M,
−1

ḡ(ξ, ξ)
ḡ)

M being any maximal integral surface of the orthogonal distribution of ξ



Applying

LEMMA M.SÁNCHEZ

Let ξ be a complete static vector field in (M̄, ḡ). Its lift to the universal
covering of (M̄, ḡ) is standard static.

We get

THEOREM

If ξ is static,

G-invariant Willmore surfaces are generated by

elastic curves in (M,
−1

g(ξ, ξ)
g)

M being any maximal integral surface of the orthogonal distribution of ξ
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With similar techniques, the following result is obtained

Given G −→ 1-parameter subgroup of isometries
with spacelike Killing vector field ξ.

THEOREM

If ξ has no zero and it is irrotational, then

G-invariant Willmore surfaces are generated by

elastic curves in (M,
1

g(ξ, ξ)
g)

M being any maximal integral surface of the orthogonal distribution of ξ



THE END
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