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4.1 Motivation4.1 Motivation
� Many neutrino oscillation experiments need to achieve           

E/L ~ 10-3 GeV/km, so for distances ~1000 km, we need interactions 
around 1 GeV.

� For example, T2K, MINOS, atmospheric experiments require 
knowledge of cross-section between 0.4 and 2 GeV/c to perform 
accurate ∆m2

23 and θ23 analysis

T2K
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4.1 Motivation4.1 Motivation
� Around 1 GeV there is a complicated region where deep inelastic 

scattering (DIS), quasi-elastic (QEL) scattering and resonance 
production (for example, 1π production) co-exist
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4.2 Charged current quasi4.2 Charged current quasi--elastic scatteringelastic scattering

� Quasi-elastic neutrino-nucleon scattering reactions (small q2): 
affects nucleon as a whole
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4.2 Charged current quasi4.2 Charged current quasi--elastic scatteringelastic scattering

� In reality, it is more complicated and we need Llewelyn-Smith 
formalism to calculate QE differential cross-sections:

� A, B, C are complicated functions of two vector form factors 
F1

V(Q2), F2
V(Q2), the axial form factor FA(Q2) and the pseudoscalar

form factor FP(Q2).
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� Form factors introduced since proton, neutron not elementary. 

� Depends on vector and axial weak charges of the proton and neutron.

� Conservation of Vector Current (CVC) relates form factors to electron 
scattering 

� Main physics to be extracted from QE scattering data are empirical form 
factor parameters (fits to mA, mV, deviations from dipole approximation)

4.2 Charged current quasi4.2 Charged current quasi--elastic scatteringelastic scattering
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4.3 Neutral current elastic scattering4.3 Neutral current elastic scattering

� Neutral current elastic neutrino-nucleon scattering reactions are 
related to the CC quasielastic (small q2): about 15% of CC QEL
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� Between the elastic and inelastic region is an area associated with 
pion production through the excitation of baryon resonances

� Invariant mass squared:

� If x=1 then quasi-elastic scattering but if x<1 
then you can excite different pion states:

4.4 Resonant 4.4 Resonant pionpion productionproduction
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� Rein and Sehgal’s model describes low energy pion production by a 
coherent superposition of all possible resonances

� Cross-section:

with:
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� All possible channels: 3 in CC and 4 in NC

4.4 Resonant 4.4 Resonant pionpion productionproduction

+−++− ++→∆+→+ πµµν µ pN
+−+− ++→∆+→+ πµµν µ nN

� For example, possible resonances are ∆++ or ∆+

Very little data, has large statistical 

errors, mainly from old bubble 

chamber experiments
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� All possible channels: 3 in CC and 4 in NC

4.4 Resonant 4.4 Resonant pionpion productionproduction

+−++− ++→∆+→+ πµµν µ pN
+−+− ++→∆+→+ πµµν µ nN

� For example, possible resonances are ∆++ or ∆+

NC data is even worse!
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4.4 Resonant 4.4 Resonant pionpion productionproduction

� Duality: use electron 
scattering data to improve 
precision of model 

� Can observe individual 
resonances with good 
agreement data and model

Bodek and Yang
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4.5 Coherent 4.5 Coherent pionpion productionproduction

� Neutrinos can also produce pions coherently (low Q2 and high ν)

� The neutrino coherently scatters off the whole nucleus with negligible 
energy transfer to the whole nucleus of mass A

� This results in a forward scattered single pion (background in 
oscillation searches because forward peaked)

� Neutral and charged current processes are possible:
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� Rein and Sehgal’s model also describes coherent pion production:

� Cross-section:
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4.5 Coherent 4.5 Coherent pionpion productionproduction

� Charged current single pion coherent cross-section:

� NC cross-section is half of CC:
coh
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4.6 Experiments4.6 Experiments

� Recent experiments carrying out measurements 
in the ~1GeV region:
– K2K  near detectors (ie. SciBar): completed

– MINOS near detector: running

– MiniBoone: running

– SciBoone: moved SciBar to Fermilab, operating at the 
Booster beamline

– Minerva (under construction)

– T2K (under construction)
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4.6 Experiments4.6 Experiments

� K2K  SciBar and SciBoone

Observed CC QE interaction

pn +→+ −µν µ
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4.6 Experiments4.6 Experiments

� MiniBoone: measurement of CCQE scattering
– Fitted form factor, effective axial mass:

ππππ0000 event

– NC π0 measurement: 28,000 events

Ratio coherent/non-coherent:
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4.6 Experiments4.6 Experiments

� Minerνa: a detector for precision interaction physics at Fermilab

Scintillator bar

+ wavelength shifting  fibre

CCQE event pn +→+ −µν µResonance event
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5. Nuclear Effects
5.1 Fermi smearing and Pauli blocking

5.2 Nuclear re-interactions
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5.1 Fermi smearing and Pauli blocking5.1 Fermi smearing and Pauli blocking

� Nuclear effects in neutrino scattering:
– In a nucleus, the target nucleon has a momentum 

which modifies scattering 

– Modelled as “Fermi gas” that fills up all available 
states until some initial state Fermi momentum, kF

– The Pauli exclusion principle ensures that states cannot occupy 
states that are already filled (Pauli blocking)

– Particles that escape nuclear medium may be re-scattered and 
deflected by the Fermi momentum, especially at low energies.

– We need better understanding of the Fermi motion 

– For example, MiniBoone have already published a paper suggesting 
a modification to the Fermi gas model based on matching QE 
scattering in all values of Q2 with their data.
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5.1 Fermi smearing and Pauli blocking5.1 Fermi smearing and Pauli blocking

� Effects on Structure Functions:
– In charged lepton scattering, have observed shadowing and 

modifications to PDFs due to nucleons.

– At small x, coherent interaction of a hadronic component of the virtual 
photon with target nucleus - shadowing

– It is not clear if this is also present in neutrino structure functions 
since at low x, dominated by axial current

Shadowing

Anti-shadowing

EMC effect

Fermi motion

These effects need to be 

studied in detail with high

statistics neutrino scattering
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5.2 Re5.2 Re--interactionsinteractions

� Nuclear effects in resonance 
region:
– Production of resonance may be 

affected by nuclear medium (see plot 
of photoabsorption data)

– Resonant structure gets washed out

– Pions may either rescatter or be 
absorbed. This needs to be measured
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ConclusionsConclusions

� Neutrino interactions have provided valuable insight into the 
theory of weak interactions
– Maximal parity violation, V-A theory and finally the Glashow-Weinberg-

Salam electroweak theory were developed in part from information on 
neutrino interactions

– Neutrino interaction data is used to probe the electroweak theory, such 
as in the measurements of sin2θW.

� Neutrino interactions have also provided information on the 
structure of nucleons 
– Structure function measurements and scaling violations have been

observed (F3 is only accessible through neutrino interactions)

� Neutrino oscillations allow us to probe the grand unification 
energy scale, but it is crucial that we understand further the 

~1 GeV energy region to be able to exploit oscillation 
experiments to the maximum

� A new generation of experiments is commencing to lead the 
way towards a new precision era in neutrino interaction physics


