

- Point-source analysis and current results
- Atmospheric neutrino analysis
- Current physics results
- SN Collapses

Cherenkov Neutrino Telescope Projects

Full Sky Coverage with upgoing neutrinos

To cover better galactic sources we need Med detectors

ANTARES 43° N Galactic Centre 2/3 of day

IceCube/AMANDA at South Pole

TeV sources from tevcat.uchicago.edu > 70 TeV sources

IceCube

United states

http://icecube.wisc.edu

- Univ Alaska, Anchorage
- UC Berkeley
- UC Irvine
- Clark-Atlanta University
- U Delaware / Bartol Research Inst
- University of Kansas
- Lawrence Berkeley National Lab
- University of Maryland
- Pennsylvania State University
- University of Wisconsin-Madison
- University of Wisconsin-RiverFalls
- Southern University, Baton Rouge

Europe

- University Utrecht
 Uppsala University
- Stockholm University
- University of Oxford
- Universität Mainz
- Humboldt Univ., Berlin
- DESY, Zeuthen
- Universität Dortmund
- Universität Wuppertal
- MPI Heidelberg
- RWTH Aachen

IceCube Neutrino Observatory

50 m

IceCube

up to 80 strings with 60 Digital Optical Modules 4800 DOMs 17 meters between them 125 meters between strings 1 Giga Ton Detector No single point failure in a string! **DOM failure rate about 1%**

Now: 2400 DOMs on 40 strings!

IceTop Air shower array

80 Pairs of Ice Cherenkov Tanks 10 m apart each with 2 DOMs Now: 80 tanks => 160 DOMs!

Digital Optical Module (DOM)

PMT: 10 inch Hamamatsu Power consumption: 3 W Digitize at 300 MHz for 400 ns with custom chip 40 MHz for 6.4 µs with fast ADC Dynamic range 200pe/15 nsec

Send all data to surface over copper 2 sensors/twisted pair. Flasherboard with 12 LEDs Local HV

Clock stability: $10^{-10} \approx 0.1$ nsec / sec Synchronized to GPS time every ≈ 10 sec Time calibration resolution = 2 nsec

ANTARES

• The largest underwater NT in the Northern Hemisphere and the first undersea NT, an invaluable step towards KM3 in the Mediterranean Sea

- Consortium of 40 Institutions from 10 European countries in European Strategy Forum on Reasearch Infrustructures roadmap
- Propose a facility for Deep Sea Science
- CDR ready
- Site decision still open

Entering the km³ era

Accumulated Exposure at 100 TeV

this yr IceCube/ AMANDA integrated exposure about 1 km² yr at 100 TeV

IceCube - IceTop coincident events

26 stations (52 tanks)

Muon direction given by position of station and Center Of Gravity of InIce Signals.

Comparison of InIce reconstruction to "known" muon direction. Moon shadow is another method to demonstrate absolute pointing of the telescope

What science with these fluxes?

Astrophysics

• Extragalactic sources: AGN & GRBs • Galactic sources: SNRs, pulsar wind nebulae, magnetars, micro-quasars, unidentified sources, galactic plane •GZK neutrinos (CRs interacting with CMWB) •SN collapse •Large scale anisotropies with muons Physics beyond the SM and Dark Matter •Dark Matter: WIMPs, Monopoles •cross sections at EeV energy •test of Lorentz invariance and equivalence principle, cross sections at UHE Standard particle physics and Hadronic interactions • pion, K and charm physics at TeV energies in the Lab Neutrino oscillations •Climatology with muons

Track Reconstruction

d = 71 m

1000

time delay / ns

1500

Icecube 40 strings muon

Trigger rate~ 1 kHz Muon Filter rate 24 Hz (events we use for high level analisys), Physics run started

We send 40Gb/d of filtered streams for physics analysis on the satellite bandwidth

A flasher and muon in IC40

10 10:50:02 2008

Flasher in most transparent ice, light propagates even more than 600m! We calibrate energy measurement with flashers

44 Event 86660 [9000ns, 9000ns]

The most dangerous background: coincident muons

Cuts: reconstruction quality

Other variables

ohonhRLlh/o32Zd<90 && of32Status==0 && of32SiomaDeo<2.5 && o32RLlh<9.5 && sZenMax<110 && o32NdirE>=10}

Calculate a likelihood based on whether DOMs should or should not be hit by a muon downgoing sim: 3:24e-03 H corsika: 2:39e-04 Hz corsika: 2:39e-04 Hz bonda: 2:67e-04 Hz bo

data : 2.89e-03 Hz

A hit is direct_C if: -15ns < T_res < 75ns

Data-MC agreement

Systematics: PMT effective area and angular acceptance ~30% (lower

on neutrinos since PMTs are down-looking) 20-25% absorption length Hadronic Models + Primary spectrum 30-50% depending on energy

Point-like source searches

• Partial Prob for each event

$$P_i(x, n_s) = \frac{n_s}{N} S_i(x) + \frac{N - n_s}{N} B_i(x)$$

- Likelihood function
- Log Likelihood Ratio

$$L(n_s) = \prod P_i(x_i, n_s)$$

$$\log \lambda = \log \frac{L(\hat{n}_s)}{L(n_s = 0)}$$

 \hat{n}_s number of signal events which maximize the likelihood $S_i(x)$ signal pdf, based on individual reconstructed uncertainty estimates $B_i(x)$ background pdf, based on dec. distribution of data 1

$$S_i = \frac{1}{2\pi\sigma_i^2} e^{-r_i^2/2\sigma_i^2} \cdot P(E_i|\gamma)$$

Determine significance by evaluating Log Likelihood Ratio over background-only (scrambled) datasets

Braun et al, arXiv:0801.1604

$$\mathcal{B}_i = B_{\text{zen}} \cdot P_{\text{atm}}(E_i)$$

LH method

Any observable that distinguishes signal from background can be incorporated into the likelihood analysis

First try something easy - the number of channels hit.

1st IceCube data Sky Map: Icecube9

233 in 137d, expected 227

Random clustering of background: **60%** of simulated background trials (data scrambled in right ascension), have a maximum deviation (anywhere) of **3.35 sigma** or greater.

Largest deviation from background: sigma = 1.77 (one-sided p-value = 0.04), in the direction of the Crab Nebula when looking at IC9 26 source list. Chance to obtain a p-value of 0.04 or lower with 26 independent trials is **65%**.

C. Finley, J Dumm, TM 32

presented at ICRC2007 and TAUP2007

IceCube 22 strings

IC9 1.7 neutrino events/day, 134.7 d, median ang res 2° IC22: 20 events/day at cut level, **287 days** median ang res 1.5° IC80: 200 events/day, median and res 0.8°

IceCube 22 (simulated skymap)

IceCube 22 strings discovery potential

Iikelihood method: compare null hypothesis (all atmospheric neutrinos with source hypothesis using detector PSF + energy estimator (eg Nch),
 + time dependencies (eg lightcurve from X-ray, TeV, optical telescopes)

unbinned method improves up to 40% binned method

with energy term in likelihood: **4.2 10**⁻⁸ GeV⁻¹ cm⁻² s⁻¹ (E/GeV)⁻² (mean number of source events: **10.5**)

Atmospheric neutrinos and muons: the spectrum Testing high energy hadronic interactions

IC22

Atmospheric Neutrinos

comparison: result 2000 with 2000-2003

Atmospheric neutrinos: angular distribution is the observable

